Organic electronics

The organic side of electronics lies in the use of semiconducting plastics, conjugated polymers. The world's first organic transistor and the world's first chemical chip were developed at LiU. Different research groups are working in areas as diverse as energy storage and energy recovery, LEDs and solar cells, electronic plants and bioelectronics.

World-leading basic research at Linköping University goes hand in hand with applied research and development.  Close cooperation with RISE has led to several products in printed electronics reaching the market in record time, such as a biosensor that measures blood sugar levels and a simple battery tester. More products are in the pipeline.

In bioelectronics, organic electronics convert the body's chemical signals into traditional electronic signals or signals that can be read in mobile phones. The role of conjugated polymers as a tool for the early diagnosis of diseases is also being studied.

Organic solar cells is another important research area with world leading results.

The Laboratory of Organic Electronics at LiU has an advanced cleanroom and there are printing machines in the nearby Printed Electronics Arena. 

Together with colleagues in other universities, researchers in bioelectronics run networks and a company called OBOE IPR, which manages patents and other rights in the area.

Selling energy by the metre

Organic solar cells from the presses

In 30 years, organic solar cells have gone from basic research to practical use. One year from now, they will be commercially available. Professor emeritus Olle Inganäs gives us his thoughts.

The video is texted in English.

Videos

Electronic gelling

Video
The material has been placed around a conducting fibre. In contact with an electrolyte, it expands to 100 times its volume when the first pulse, 0.8 V, is applied. When a pulse of -0.8 V is subsequently applied, it returns nearly to its original form. This can be repeated several times. Read more about the research here.

 


Heat and light sensing

Video
Inspired by the behaviour of natural skin, researchers at the Laboratory of Organic Electronics have developed a sensor that will be suitable for use with electronic skin. It can measure changes in body temperature, and react to both sunlight and warm touch. Read more about the research here

Storing energy in roses

Video
Eleni Stavrinidou leads a research group at the Laboratory of Organic Electronics working with electronic plants. The research, which has until now been financed by a free research grant from the Knut and Alice Wallenberg Foundation, has led to a completely new multidisciplinary field of research with a huge potential benefit to society.

Ongoing research

Jonpump av elektroniska komponenter och vätska, på plastfilm

Organic Bioelectronics

We investigate the transduction between electronic signals and ionic/molecular signals in electroactive surfaces, iontronic chemical delivery and circuitry, biosensors, mimicking neural function, next-generation medical therapy, and many other areas.

Functional electronic materials

In the Functional Electronic Materials group, we conduct scientific research on various state-of-the-art materials.

Organic energy storage

Many electronic materials, in particular organic ones, can be turned into inks or pastes. This opens up exciting possibilities to fabricate electronic components and circuits by common printing methods.

News

Person in labcoat and gloves pours a blue liquid onto a glass surface.

New sustainable method for creating organic semiconductors

Researchers at LiU have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics. The findings pave the way for future sustainable technology.

Two researchers connect a beaker of water to some wires.

Electronic “soil” enhances crop growth

Barley seedlings grow on average 50% more when their root system is stimulated electrically through a new cultivation substrate.  LiU-researchers have developed an electrically conductive “soil” for hydroponics.

Crecent-shaped aerogel with water droplets.

Aerogel can become the key to future terahertz technologies

Researchers at LiU have shown that the transmission of terahertz light through an aerogel made of cellulose and a conducting polymer can be tuned. This is an important step to unlock more applications for terahertz waves.

Strategic research