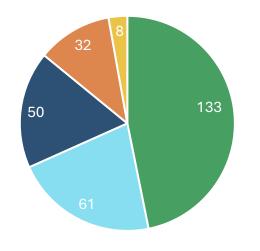
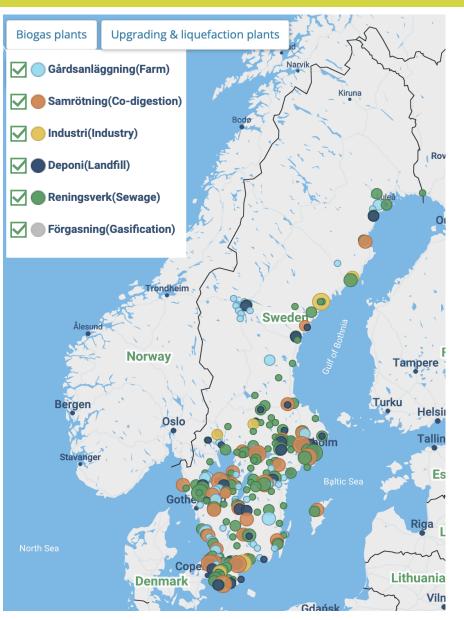
Nordic Biogas Model

Konrad Smolarczyk, Phd Candidate, Linköping University, Sweden

2025-03-03



Biogas in Sweden


Biogas in Sweden

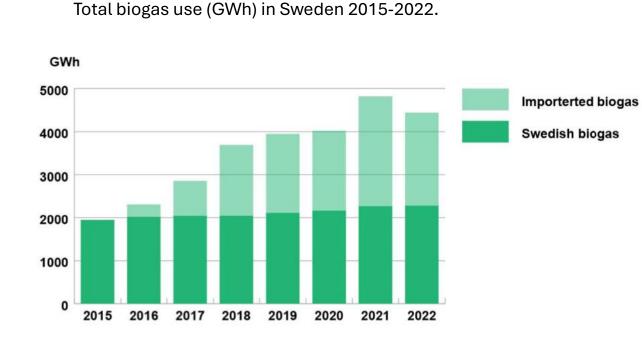
Biogas production

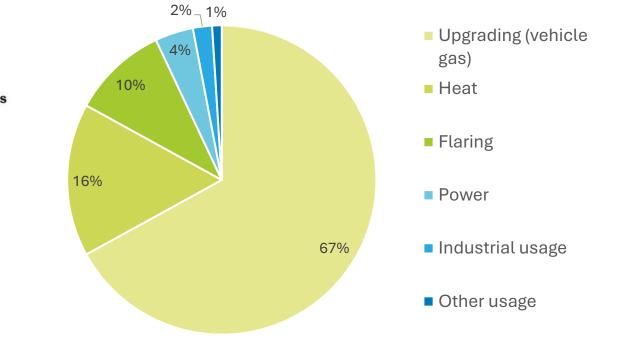
Number of biogas plants in 2022

- Wastewater treatment plants
- Farm plants
- Landfills
- Co-digestion plants
- Industrial wastewater treatment plants

Biogas production from substrates 2022 Sewage Hausehold waste 1% 5% Manure Others 29% Food industry 8% Animal waste 11% (slaughter houses) 21% Landfill 11% Industrial plant

- (sewage)
- Energy crops


3


Source: Swedish Energy Agency/Swedish Gas Association

Biogas in Sweden

Biogas use

Biogas usage 2022

Biogas Solution Research Center

Nordic Biogas Model

Nordic Biogas Model

Nordic model for biogas: 3 main concepts

- Focus on increasing valorization
- Use organic wastes, wastewater, or low-grade biomass
- Upgrade to biomethane (compressed or liquified)
- Use, or upgrade to use digestate as a biofertilizer
- Moving toward carbon capture and utilization, CCU
- Waste hygienisation **Renewable energy Renewable nutrient** ٠ & management recovery recovery O

Green bags with food waste from the municipalities are sorted optically.

Linköping – waste to value

Lower emissions of particles, NO_X and CO₂, help the city achieve its ambitious climate goals.

120 GWh of biogas-derived energy powers vehicles such as buses, cars, refuse-collection vehicles and trucks.

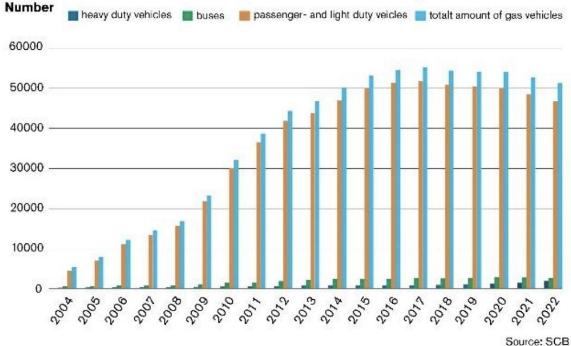
90,000 tonnes of biofertiliser replace commercial fertiliser at approximately 70 farms in the area.

> Activities around biogas create many employment opportunities in the region.

1

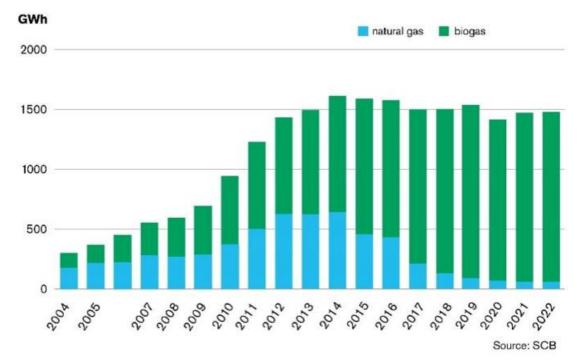
Food waste from restaurants.

Waste from the food industry. I. 100,000 tonnes of wet and problematic waste can be treated.


Tekniska verken

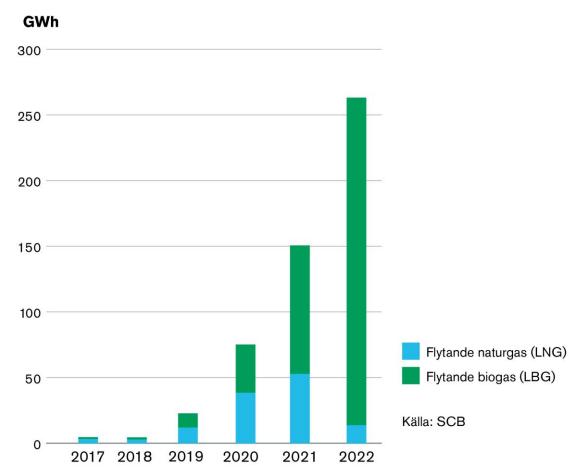
Renewable energy recovery

Biogas as a fuel

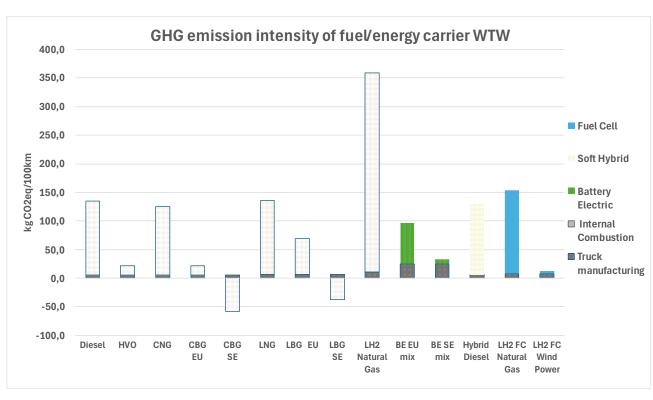

Gas vehicle market in Sweden

Number of gas vehicles in Sweden

Trafikanalys

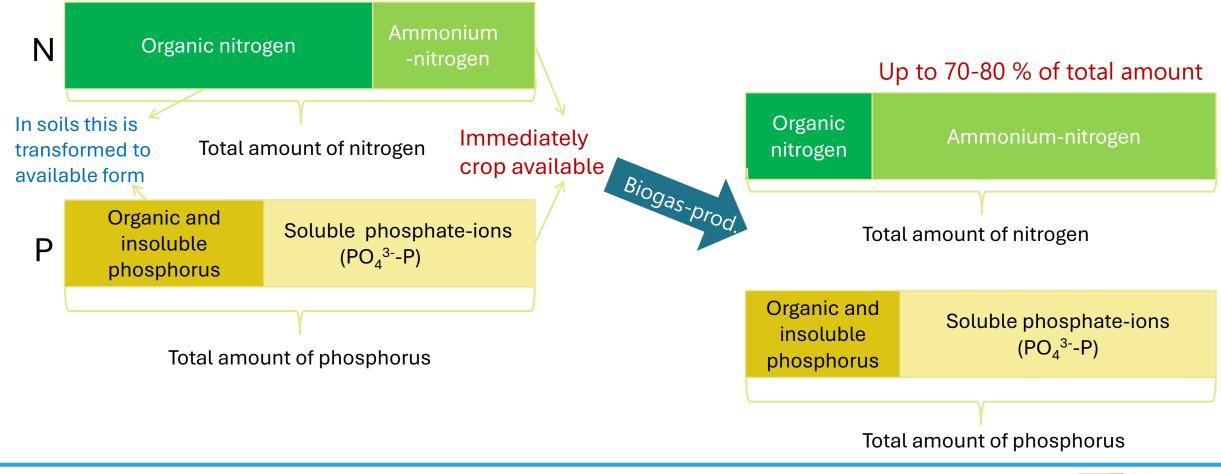

Sold volumes of CNG and CBG in Sweden

Biogas as a fuel


LNG vs LBG in Sweden

Biogas as a fuel

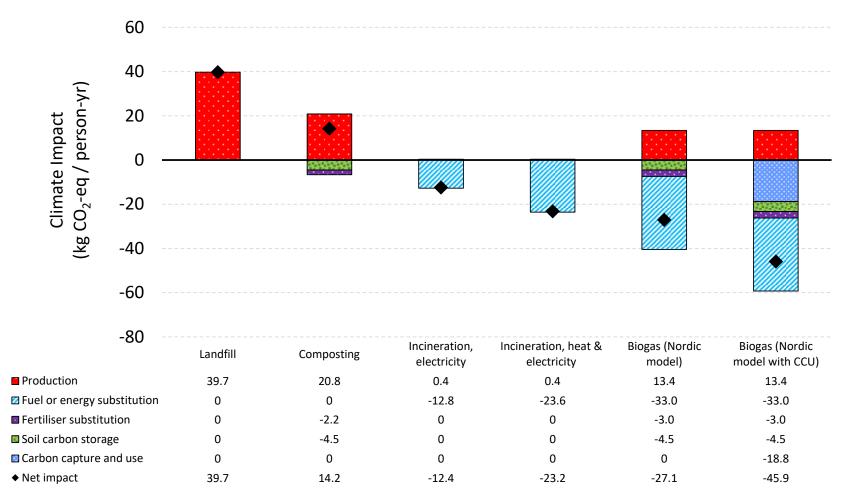
Multi-criteria comparison of Heavy-duty transportation

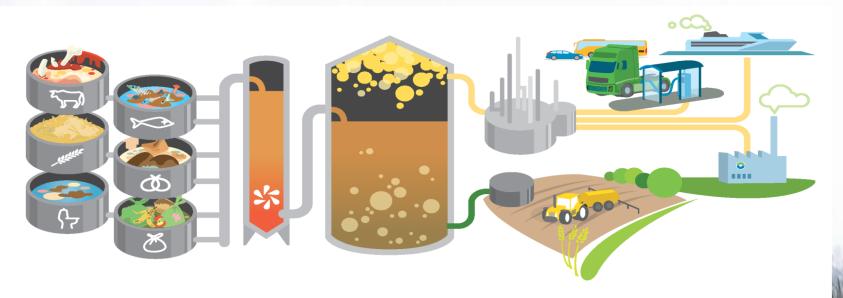


Powertrain type	Internal Combustion							Hybrid	Battery	Fuel cel
Fuel/energy carrier type	Diesel	нуо	CNG	LNG	CBG SE	LBG SE	LH2 Wind	Diesel	SE mix	LH2 Win
Maturity of technology	VG	VG	VG	VG	VG	VG	VP	VG	P-G	VP
			•••	•••			•••	•••		•••
Range	G	G	S-G	G	S-G	G	VP-VG	G	VP-S	VP-NG
	•••	***	***	•••	***	***	-	***		
Fuelling/charging efficiency	G	G	G	G	G	G	S-G	G	NR-IG	S - G
	•••	•••	•••	•••	•••	***	**	•••		
Operating flexibility	VG	VG	VG	G	VG	G	S	VG	VP	S
			•••	•••		•••	••	••	***	**
Infrastructure availability	VG	VG	G	G	G	G	VP	VG	Р	VP
	•••	•••	**	••	**	**	***	•••	••	•••
CAPEX	G	G	S	S	S	s	VP	G	VP	VP
	•••	***	***	***	***	***	•	**	••	•
OPEX	Р	VP	Р	Р	S	S	VP	S	VG	VP
	***		***	•••	***	***	•	**	••	•
Security of supply and cost stability	VP	VP	Р	Р	S	S	VP	VP	Р	VP
	***	***	**	••	***	***	•	•••	•	•
GHG emission savings	VP	VG	VP	VP	VG	VG	VG	VP	VG	VG
	•••	••	***	•••	•••	•••	••		•••	••
Primary energy efficiency	VG	VG	G	G	Р	Р	VP	VG	VG	VP
	•••	•••	***	•••	•••	•••		•••	•••	***
Air quality impact	P-S	P-S	G	G	G	G	G	P-S	G-VG	VG
	**	**	**	**	**	**	•	**	**	••
Land or aquatic environmental impact	VP	VP	VP	VP	G	G	S	VP	S	S
	•••	**	***	•••	**	**	•		**	•
Political support	VP	S	Р	Р	S	s	G	VP	G	G
	***	**	**	••	**	**	••	***	•••	••
Sociotechnical systems services	S	S	S	S	VG	VG	S	S	WP-WG	S
	***	•••	***	***	••••	•••	••	***		••
Working environment of the	VP	VP	S	S	S	S	S	VP	VG	VG
driver	•••		••	••		••	•			•
		10						Solutions Research Center		

Preliminary results!

Renewable nutrient recovery


All nutrients in the feedstock remains in the digestate /biofertilizers but are more available for the crop



Climate Impact in a theoretical 1 million city by waste handling pathways

Effects of NBM application

Nordic biogas model Waste management Renewable energy Renewable nutrients

Biogas solutions can adress them all, at the same time Air pollution

Soil health and fertility

Water pollution

Urbanisation and congestion

Amount of waste grows

Fossil energy dependency

Climate change

Not enough jobs

Energy security

LANDFILL CITY VALUE CREATION (Diesel buses)

Dissemination and coation of knowledge and innovation

ource cascading and reased valorisation

• manual ma

proving competitivenes or the city's companies

ore attractive region fo habitants, tourists, and oveen investments Better resilience for the community as well as local companies

nin unit.

Energy recovery

Nutrients recovery

Sustainable waste management

Broader effects

Energy security

Renewable energy

sustainability performance

umber of green jobs created Better regional environmental conditions

Better public health

enewable fertilize produced

National P balances

Better agricultur

HIII.

COMPOST CITY VALUE CREATION (Diesel buses)

Dissemination and coreation of knowledge and innovation

Resource cascading and Increased valorisation Improving competitiveness for the city's companies

More attractive region for inhabitants, tourists, and green investments Better resilience for the community as well as loca companies

Energy recovery

Nutrients recovery

Sustainable waste management

Broader effects

Energy security

Renewable energy

Improved water quality sustainability performance

Number of green jobs created Better regional environmental conditions

Better public health

Renewable fertilizer produced

National phosphorous balances

Better agricultural soil health and fertility

Enabling sustainable farming practices

-

Increased land availability Hygienization of biologically hazardous organic wastes

INCINERATION CITY VALUE CREATION (electric buses)

Dissemination and coation of knowledge and innovation

Climate impact mitigation

Improving competitiveness for the city's companies

More attractive region for inhabitants, tourists, and green investments Better resilience for the community as well as local companies Energy recovery

Nutrients recovery

Sustainable waste management

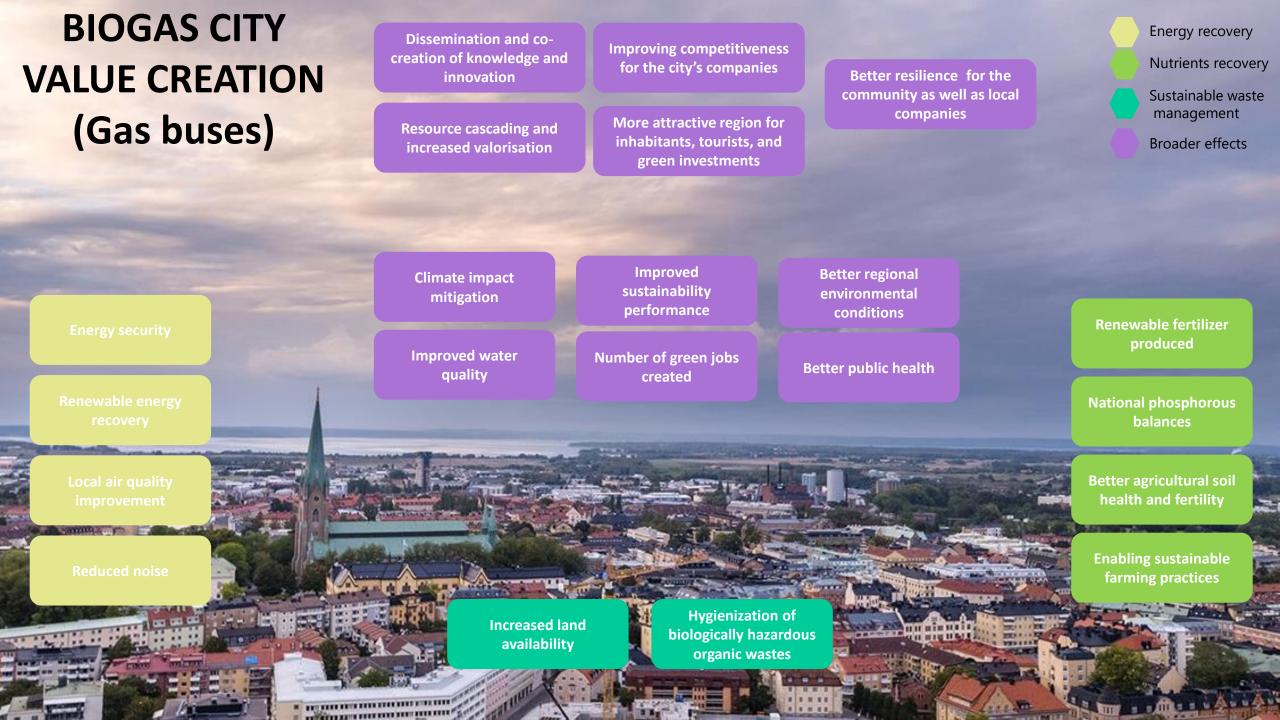
Broader effects

conditions Better public health

Renewable fertilizer produced

National P balances

-


ocal air quality

improvement

educed noise

Increased land availability

Hygienization of biologically hazardous organic wastes

Thank you for listening!