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Introduction

Many mechanical systems have time-dependent physical prop-
erties and a marine vessel is one example of such a system. By
estimating these properties online, a higher model accuracy
can be obtained. For online estimation only a limited set of
sensors are available and therefore estimation of a complete
model can be cumbersome. One alternative is to look at the
system as a dynamic network and model a part of it. In that
case the estimation problem can sometimes be turned into a
closed-loop errors-in-variables formulation.

IV Estimation for Closed-loop Systems
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« Challenge: Correlation between input and noise

e Solution: Two-step method using models of closed-loop rela-
tions .

Proposed Method

Two-step IV method
with artificial neural
networks

1. Estimate two artificial
neural networks which
relates r(¢) to y(¢) and
u(t), respectively. Use
the neural networks to
simulate noise-free ver-
sions of y(¢) and wu(t),
denoted ¢(¢) and u(t).

2. Form the instrument
vector to mimic a noise-

y(t)

free version of the t—-n
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regression vector and (t-1)
estimate the sought ;
after parameters using a(t - ny)
(1).
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Simulation Results
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Set-up 1

Estimation data

fit(u, aVARX) = 2106 + 1.1
fit(u, tNOF) = 20.8 +19.2
fit(y, gV ALX) = 14.8 £ 1.0
fit(y, gV OL) = p5ug| + 38.1
Noise-free estimation data
fit(u, aNARX) = g + 2.0
fit(u, tVOF) = 73.3 £ 6.3
fit(y, gV ALRX) = 7602 + 2.1
fit(y, N OF) = 64.6 + 9.6
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e Result illustration: Fit-histograms from Monte Carlo simula-

Set-up 2

u = Sat(Fp](e)).
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Set-up 2
Estimation data
fit(w, AN ARX) = 19.9 + 10.5
fit(u, uVNOL) = g7g + 12.0
fit(y, jNARX) = 26.1 + 7.9
fit(y, VOL) = ggio + 16.2

Noise-free estimation data
fit(u, aNARX) = g7 + 9.3
fit(u, tNOF) = 27.2 +11.3
fit(y, gV ALX) = 5ow + 9.1
fit(y, gVOF) = 25.4 + 14.5
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Real Data

et

Data from a laboratory [ s

site at the Norwegian
University of Science and
Technology (NTNU) was
collected. A question was
if this data could be used
for revealing nonlinear
rudder effects. The data
was collected using a
binary switching rudder
angle, luckily with two
different amplitude levels.

Estimated Models
Rudder angle to yaw rate
Linear models (ARX)
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Piecewise linear model (ARX)
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Observations

Rudder angle to roll rate
Linear models (OE)
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» There are benetfits from acknowledging that the closed-loop re-

lations are nonlinear.

« NOE models are more prone to overfitting than NARX models

in the simulation examples.

» The rudder-to-yaw-rate dynamics could be captured, both with
an autoregressive model and with an output-error model.

e The rudder-to-roll-rate dynamics could not be explained by an
autoregressive model but could be described with an output-

error model.

» There seem to be significant nonlinear effects in both cases.
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