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Introduction
Manymechanical systems have time-dependent physical prop-
erties and a marine vessel is one example of such a system. By
estimating these properties online, a higher model accuracy
can be obtained. For online estimation only a limited set of
sensors are available and therefore estimation of a complete
model can be cumbersome. One alternative is to look at the
system as a dynamic network and model a part of it. In that
case the estimation problem can sometimes be turned into a
closed-loop errors-in-variables formulation.

IV Estimation for Closed-loop Systems
θ̂IV � argminθ
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• Challenge: Correlation between input and noise

• Solution: Two-step method using models of closed-loop rela-
tions
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ũ
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Proposed Method
Two-step IV method
with artificial neural
networks

1. Estimate two artificial
neural networks which
relates r�t� to y�t� and
u�t�, respectively. Use
the neural networks to
simulate noise-free ver-
sions of y�t� and u�t�,
denoted ˆ̊y�t� and ˆ̊u�t�.

2. Form the instrument
vector to mimic a noise-
free version of the
regression vector and
estimate the sought
after parameters using
(1).
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Simulation Results
• True system: G0 �

b1q�1�b2q�2

1�f1q�1�f2q�2

• Evaluation metric: fit�y, ŷ� � 100�1 � Yy�ŷY
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• Result illustration: Fit-histograms from Monte Carlo simula-
tions
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r � y if �r � y� C 0

0.1�r � y� if �r � y� @ 0

ARX

NARX

NOE

Set-up 2

e � 0.01r � r2 � y,

u � sat�FPI�e��.

NARX or NOE
Set-up 1
Estimation data
fit(u, ûNARX� � 21.6 � 1.1
fit(u, ûNOE� � 20.8 � 19.2
fit(y, ŷNARX� � 14.8 � 1.0
fit(y, ŷNOE� � 15.5 � 38.1

Noise-free estimation data
fit(u, ûNARX� � 77.7 � 2.0
fit(u, ûNOE� � 73.3 � 6.3
fit(y, ŷNARX� � 76.2 � 2.1
fit(y, ŷNOE� � 64.6 � 9.6

Set-up 2
Estimation data
fit(u, ûNARX� � 19.9 � 10.5
fit(u, ûNOE� � 47.4 � 12.0
fit(y, ŷNARX� � 26.1 � 7.9
fit(y, ŷNOE� � 43.0 � 16.2

Noise-free estimation data
fit(u, ûNARX� � 34.7 � 9.3
fit(u, ûNOE� � 27.2 � 11.3
fit(y, ŷNARX� � 50.2 � 9.1
fit(y, ŷNOE� � 25.4 � 14.5

Real Data
Data from a laboratory
site at the Norwegian
University of Science and
Technology (NTNU) was
collected. A question was
if this data could be used
for revealing nonlinear
rudder effects. The data
was collected using a
binary switching rudder
angle, luckily with two
different amplitude levels.

Estimated Models
Rudder angle to yaw rate
Linear models (ARX)
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Piecewise linear model (ARX)
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Rudder angle to roll rate
Linear models (OE)
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Piecewise linear model (OE)
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Observations
• There are benefits from acknowledging that the closed-loop re-
lations are nonlinear.

• NOEmodels are more prone to overfitting than NARXmodels
in the simulation examples.

• The rudder-to-yaw-rate dynamics could be captured, bothwith
an autoregressive model and with an output-error model.

• The rudder-to-roll-rate dynamics could not be explained by an
autoregressive model but could be described with an output-
error model.

• There seem to be significant nonlinear effects in both cases.
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