Output Regulation of Unknown Linear Systems using RL Farnaz Adib Yaghmaie (farnaz.adib.yaghmaie@liu.se)

Problem Formulation

Output regulation (OR) is defined as designing the controller

- to tacks a reference trajectory and
- to reject the effect of a disturbance with known model. Usually, the dynamics of the reference and the disturbance are combined into a single dynamic system called *exo-system* in the literature. Consider the system as

$$\dot{x} = Ax + Bu + Dv,$$

$$y = Cx,$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$ denote the state, the control and the output of the system. Define the exo-system as

$$\dot{v} = Sv,$$
$$w = Fv,$$

where $v \in \mathbb{R}^q$, $w \in \mathbb{R}^p$. It is desired to design the controller u such that the output regulation error, denoted by $e \in \mathbb{R}^p$, converges to zero

 $e = y - w = Cx - Fv \to 0.$

Theorem (Standard Solution to OR)

Assume that (A, B) is stabilizable and $Re(\lambda) \leq 0, \forall \lambda \in B$ Spec(S). Assume that K_{fb} is selected such that A + BK_{fb} is strictly stable. Then, the controller

 $u = K_{fb}x + (\Gamma - K_{fb}\Pi)v$

solves the output regulation problem if and only if

 $\Pi S = A\Pi + B\Gamma + D,$ $C\Pi - F = 0.$

have a solution.

Standard solution

- is model-based.
- needs offline computation.
- is not optimal.

Optimal OR

Introduce the quadratic performance index to be minimized

$$V_a(X(t), u(t)) = \lim_{T \to \infty} \frac{1}{T} \int_t^{t+t}$$

The following result is useful in designing a reinforcement learning algorithm.

Lemma

Minimizing (1) is equivalent to minimizing

$$V_{\infty}(X(t), u(t)) = \int_{t}^{+\infty} (r(x)) dt$$

in the sense that an optimal control to (2) is also optimal for (1).

Model-Free Reinforcement Learning (RL) Algorithm

sequence of $u^{(k)}$ converging to the optimal controller u^* .

Model-free RL Algorithm

1: Initialize: $u^{(0)} = K^{(0)}X$, k = 0.

- 2: repeat
- 3:
- information at N sample times. Find $P^{(k)}$, $\lambda^{(k)}$, $K^{(k+1)}$ from

$$\begin{split} X^{\dagger}(t)P^{(k)}X(t) &= \int_{t}^{t+\delta t} (e^{\dagger}Qe + u^{(k)\dagger}Ru^{(k)}) d\tau \\ &+ X^{\dagger}(t+\delta t)P^{(k)}X(t+\delta t)) \\ &+ 2\int_{t}^{t+\delta t} (u-u^{(k)})^{\dagger}RK^{(k+1)}X d\tau \\ &- \delta \lambda^{(k)} \end{split}$$

UA \cdot \cdot . 5: **until** Convergence

 $e^{\dagger}Qe + u^{\dagger}Ru \, d\tau.$ (1)

 $(X(\tau), u(\tau)) - \lambda^*) d\tau$ (2)

We apply a behavioral policy $u = u^{(k)} + e$ while learning a

Apply $u = K^{(k)}X + e$ and collect the required

Simulation Result

Output regulation for an F16 aircraft system

$$A = \begin{bmatrix} -1.01887 & 0.90506 & -0.00215 \\ 0.82225 & -1.07741 & -0.17555 \\ 0 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$
$$S = \begin{bmatrix} 0 & 1 \\ -0.01 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

The weights are Q = 100

Ar

$$vecs(P^*) = [50.614]$$

9.118
1.995
 $K^* = [5.025]$

 $vecs(P^{(9)}) =$ [50.614 9.118 1.995 $K^{(9)} =$ [5.025

$$0, R = 1.$$

nalytical method

4 17.264	-1.005	-72.609	-7.587
-0.681	-29.408	-5.714	0.067
0.755	\diamond	\diamond	◊]
3.406	-0.332	-9.998	-3.738]

Model-free Algorithm

4	17.264	-1.005	-72.609	-7.587
	-0.681	-29.408	-5.714	0.067
	0.755	110.239	19.956	-1.102]
	3.406	-0.332	-9.975	-3.774]

LINKÖPING UNIVERSITY **Division of Automatic Control**