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Linköping University
jonas.unger@liu.se

Murat Kurt
International Computer Institute

Ege University
murat.kurt@ege.edu.tr

Abstract

This paper presents a novel approach for efficient sam-
pling of isotropic Bidirectional Reflectance Distribution
Functions (BRDFs). Our approach builds upon a new pa-
rameterization, the Projected Deviation Vector parameteri-
zation, in which isotropic BRDFs can be described by two
1D functions. We show that BRDFs can be efficiently and
accurately measured in this space using simple mechani-
cal measurement setups. To demonstrate the utility of our
approach, we perform a thorough numerical evaluation
and show that the BRDFs reconstructed from measurements
along the two 1D bases produce rendering results that are
visually comparable to the reference BRDF measurements
which are densely sampled over the 4D domain described
by the standard hemispherical parameterization.

1. Introduction
The scattering of light at a surface, described by the Bidi-

rectional Reflectance Distribution Function (BRDF) [8], is
the fundamental aspect in most computer vision and graph-
ics applications. Accurate descriptions of material proper-
ties such as color, reflectance and texture are key compo-
nents in photo realistic image synthesis. In computer vision
it is often necessary to model, represent and process the ma-
terial characteristics and scattering behavior in order to per-
form higher level semantic analysis of scenes captured us-
ing image based methods or accurate reconstruction of 3D
shapes. These applications have driven the research and de-
velopment of a large set of methods and techniques for mea-
suring and modeling BRDFs and Spatially Varying BRDFs
(SVBRDFs) such that they can be efficiently used for anal-
ysis and synthesis of material properties, for an overview
see [3]. A difficult challenge, however, is that most BRDF
measurement techniques are very time consuming as the ra-
diance scattered at the surface needs to be densely sampled
over the 4D space of incident ωi and scattered (outgoing)
ωo directions.

In this paper, we describe a novel BRDF parameteriza-

tion called Projected Deviation Vector (PDV) parameteriza-
tion, which allows isotropic BRDFs to be accurately repre-
sented as a multiplication of two 1D basis functions. We
show how this property can be exploited to enable efficient
and accurate measurement of isotropic BRDFs in a single
planar slice of the standard 4D hemispherical parameteri-
zation (ωi, ωo). We evaluate our method using the MERL
BRDF data base presented in [7] as a reference, and dis-
cuss how simple but accurate measurement devices can be
constructed.

2. Background
Accurate measurement and modeling of BRDFs and

SVBRDFs is an extensively researched field, for an
overview see [3]. Due to the flexibility most approaches
for BRDF measurements still build on point sampling and
gonio-reflectometers such as [1, 2]. The advantage of
gonio-reflectometers is that the mechanics and optics are
relatively simple as only a light source, a digital light sen-
sor such as a camera and some motors are required; all of
which can be bought off-the-shelf. The downside, however,
is that it may take hours or even days to densely sample the
full 4D BRDF.

In the pioneering work described in [13], Ward devel-
oped a setup consisting of a hemispherical mirror and a
camera with a fisheye lens to simultaneously capture all
outgoing directions as a light source was moved over all
incident directions to efficiently capture the full BRDF. The
widely used MERL BRDF data base described in [7], used
as reference in this paper, was similarly to the work by
Marschner et al. [6] captured using the same principles,
but instead of using a hemispherical mirror to sample all re-
flected rays the physical material samples were shaped as
spheres. To capture the BRDF each spherical material was
imaged using a digital camera capturing all outgoing direc-
tions as a light source was moved around the sample. The
MERL BRDF data consists of 100 isotropic materials and
is stored in the form of the so called Half-Diff parameteri-
zation developed by Rusinkiewicz [12]. Each material was
sampled densely and kept with resolution of 90× 90× 180
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Figure 1. The projected deviation vector parameterization is
formed by the projected deviation vector, DP . The DP vector
is the vector between the projected reflection vector, RP and the
projected light vector, LP , on the unit disk. The PDV parameter-
ization consists of three parameters, (θr, dp, φp). θr is the zenith
angle of the reflection vector,R. dp is the length ofDP vector. φp

is the azimuthal angle between RP and DP .

for (θh, θd, φd) angles.
More recently attention has been put towards develop-

ing more efficient parameterizations, factorization methods,
and in-depth analysis of efficient basis representations. The
work by Romeiro et al. presented in [11] proposes a method
where the Half-Diff parameterization, [12], is used to cap-
ture and represent isotropic BRDFs as a 2D reflectance
function. By analyzing BRDF data bases, Xu et al. [14]
and Nielsen et al. [9] developed approaches based on Prin-
ciple Component Analysis (PCA), [4], of the MERL BRDF
data base.

The PDV parameterization described in this paper is in-
spired by the work described by Löw et al. [5] and their
study of the ABC BDRF models. As our main contribution,
we show how the separability of isotropic BRDFs into two
1D basis functions can be exploited to develop fast mea-
surement methods. For simplicity, we rely on traditional
point sampling but we believe that the PDV parameteriza-
tion could be used as the underlying representation to im-
prove optimal sampling methods and BRDF reconstruction
from basis representations such as PCA as described by
Nielsen et al. [9]. Similarly to the 2D representation pre-
sented by Romeiro et al. [11], we believe that the PDV pa-
rameterization also could be used for BRDF inference from
data captured in the wild.

3. PDV Parameterization

The PDV parameterization of BRDFs consists of three
parameters (θr, dp, φp). These three parameters are related
to the incident and outgoing vectors (ωi, ωo) as shown in
Figure 1. θr is the zenith angle of the perfect reflection
of outgoing vector, ωo. dp is the length of the deviation
vector, Dp. The deviation vector is formed by the projected
vectors of both incoming and reflection vectors. The third
parameter, φp, is the azimuthal angle between the deviation

vector and the Rp vector. Algorithm 1 and 2 provide the
pseudocode for converting between (ωi, ωo) parameters and
the PDV parameters.

Input: (θi, φi, θo, φo)
Result: return (θr, dp, φp)
θr = θo
φi = φi − φo
φo = 0.0
Rp = (sin(θo)cos(φo + π), sin(θo)sin(φo + π))
Lp = (sin(θi)cos(φi), sin(θi)sin(φi))
Dp = Lp −Rp
dp = len(Dp)
φp = atan2(Dp.y,Dp.x)

Algorithm 1: Converting (ωi, ωo) to PDV parameters.

Input: (θr, dp, φp)
Result: return the Standard parameters (θi, φi, θo, φo)
Rp = (−sin(θr), 0.0)
Lp = (dpcos(φp) +Rp.x, dpsin(φp) +Rp.y)
if len(Rp) > 1.0 or len(Lp) > 1.0 then

return null
else

φi = atan2(Lp.y, Lp.x)

θi = abs(asin(
Lp.x
cos(φi)

))

if θi > π
2 then

return null
else

θo = θr
φo = 0.0

end
end

Algorithm 2: Converting PDV parameters to (ωi, ωo).

3.1. Parameter Sampling

The θr and φp parameters are in the angular domain and
can be efficiently sampled with evenly distributed samples
over the parameter domain. However, as the dp parame-
ter describes the shape of the BRDF lobe, linear sampling
leads to an inefficient parameterization. Figure 2 shows the
BRDF values of specific θr and φp along dp dimension.
Most of the BRDF values outside of the specular region
are relatively low and for many materials almost flat, and
can be represented with only a small number of samples as
compared to the specular peak where a higher sample den-
sity is required.

To compute an efficient sampling distribution along the
dp parameter, we use the inversion method. Using all mea-
surements in the MERL data base, [7], we linearly sampled
the BRDF data in PDV space with 2000 evenly distributed
samples along dp over its parameter range [0, 2). All of the
sampled BRDFs are then summed using Equation 1:
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(a) alum-bronze BRDF (b) blue-rubber BRDF

Figure 2. The figures contain examples of BRDF plots in the PDV
parameterization. Both BRDFs are from a fixed angle of θr = 45◦

and φp = 0◦. Vertical axis is BRDF values scaled by logarithmic
function and horizontal axis is the index of dp values. The left
figure shows the BRDF plot of alum-bronze which represents the
class of glossy materials. The right figure shows the BRDF plot
of blue-rubber which represents the class of diffuse materials. It is
apparent that BRDFs in the PDV parameterization aligned mostly
around small dp, i.e. around the specular peak.
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Figure 3. The sampling distribution along the dp parameter is
computed to be inversely proportional to the Enorm,j distribution
computed as the mean over all materials in the MERL BRDF data
base.

Ej =

∑M
m

∑
i

∑
k ρm(i, j, k)

M
, (1)

where Ej is an element in a vector E = {Ej |j =
1, 2, ..., 2000}, ρm is the BRDF value of mth material and
M is the number of BRDFs in the data base.

We then normalize Ej for the inversion method by
Enorm,j =

Ej∑
Ej

. The non-linear sample distribution
along dp is then computed to be inversely proportional to
the normalized mean distribution, Enorm,j , computed from
BRDFs in the MERL data base as illustrated in Figure 3.
For the experiments in this paper we used 90 non-linearly
distributed samples along the dp parameter.

4. Isotropic BRDF Measurements
A key aspect of the PDV parameterization is that

isotropic BRDFs are radially symmetric along the perfect
reflection vector. Figure 4 illustrates the PDV coordinates
along the perfect reflection directions visualized on the
hemisphere (3D) and the unit disk (2D). The circles on the
unit disk represent level curves on the BRDF lobe, i.e. all
samples along a circle will have the same BRDF value. This

(a) θr = 30◦ (b) θr = 70◦

(c) θr = 30◦ (d) θr = 70◦

Figure 4. Illustrations of PDV coordinates on hemisphere, (a), (b),
and unit disk, (c), (d), with varying θr . Each coordinate circle is
of length dp = 0.044 apart and rotating φp ∈ (0, 2π).

behavior is discussed in the study of the ABC BRDF model
by Löw et al. [5]. The PDV parameterization was designed
to capture the characteristics of the isotropic BRDFs by ex-
ploiting this symmetry. This means that isotropic BRDFs
can be described as a 2D function spanned by the two pa-
rameters, θr and dp. Hence we make an assumption that
given ρz1(θr, dp, φp = z1) and ρz2(θr, dp, φp = z2) then
ρz1 = ρz2.

Studying the behaviour of measured BRDFs in this 2D
representation, we have found that isotropic BRDFs under
the logarithmic transform are separable into two 1D vec-
tors with only very small reconstruction error. We can thus
make an assumption that isotropic BRDFs can be decom-
posed into three univariate functions. Denoting the loga-
rithmically transformed BRDF as ρt = log(ρ+ 1), this can
be expressed as follows. For any given point (θr, dp, φp)

ρt(θr, dp, φp) = F1(θr)F2(dp)F3(φp), (2)

since F3(φp) = C is constant for any φp, the BRDF can be
described as:

ρt(θr, dp, φp) = F (θr)G(dp). (3)

The full BRDF can thus be characterized by measuring
the two basis vectors F (θr) and G(dp) along the θr and
dp parameter directions respectively as illustrated in Fig-
ure 5. G(dp) can be taken directly from measurements
as it describes F2(dp)C for a fixed parameter value for
θr = θdpr . F (θr) is computed as F (θr) = Fm(θr)/G(x),
where Fm(θr) is the measurement vector along the θr direc-
tion and G(x) is a ratio factor measured at the intersection
of Fm(θr) and G(dp) used to normalize F (θr). This is de-
scribed in detail below. It is important to note that F (θr)
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Figure 5. The BRDF matrix illustrates how the two separable ba-
sis functions F (θr) and G(dp) spans the 2D matrix representing
the BRDF, and shows that if the blue elements representing F (θr)
and G(dp) are measured, the missing BRDF value in the red ele-
ment can be computed by using Equation 3.

and G(dp) can be measured as a planar slice of the 4D
BRDF.

Measuring G(dp) (horizontal blocks) is done by fixing a
camera direction and moving the light directions over the
full 180◦ along the plane of incidence illustrated in Fig-
ure 6(a). Measuring F (θr) (vertical blocks) is equivalent
to move both the light source and the sensor to capture
the BRDF data in the perfect reflection directions over the
0−90◦ arc as illustrated in Figure 6(b). In order to compute
the basis function F (θr) it is necessary to compute the ratio
of the actual measurements. This is done by dividing the
measured BDRF values, Fm(θr), with the measured BRDF
value at G(x). In Figure 6(b) this should be thought of as
the configuration of the light source and the camera that is
the same in the measurement of both G(dp) and Fm(θr),
i.e. they represent the same BRDF sample. The location,
x, of the intersection of G(dp) and Fm(θr) depends on θdpr
and the configuration of the measurement setup, and can in
practice be chosen arbitrarily. In the setup illustrated in Fig-
ure 6 it corresponds to x = 0. This means that for a given
θdpr , the G(x) value corresponds to the direct reflection di-
rection. In Figure 5 the BRDF element corresponding to
G(x = 0) is the element denoted by x.

Isotropic BRDF data is fundamentally represented as
a 3D matrix. By using Equation 3, we can estimate the
full 2D PDV representation. By using the assumption that
the BRDF values along φp are constant, the rest of the
BRDF data can be estimated using only the reconstructed
2D BRDF data slice. The capture of isotropic BRDFs in the
separable PDV parameterization can be carried out using a
measurement setup where a light source and sensor move in
the same plane. A capture device with one degree of free-
dom for the light and sensor respectively can be constructed
using off-the-shelf components.

(a) Measuring horizontal BRDF blocks, G(dp)

(b) Measuring vertical BRDF blocks, F (θr)

Figure 6. The figures illustrate the simple measurements of G(dp)
and F (θr), where (a) measures the shape of the BRDF lobe distri-
bution and (b) the variation of the specular peak over the angular
domain.

5. Results and Discussion
As our results, we evaluate our BRDF measurement ap-

proach using the MERL BRDF data base described in [7].
To numerically evaluate the reconstruction error, we con-
verted all materials in the MERL BRDF data into the PDV
parameterization. We then virtually sampled all materials
according to the method described in Section 4 and com-
puted the reconstruction error as the difference to the origi-
nal BRDF data. We also present visual comparisons of syn-
thesized computer graphics images which show the differ-
ence between reconstructed and reference materials using
the PBRT renderer described by Pharr and Humphreys [10].
BRDF reconstruction error: To numerically compare re-
constructions to the reference we use the relative RMS
(Root Mean Squared) error. We used the relative RMS er-
ror because the absolute error of the specular reflectance
may dominate the error of the diffuse reflectance in some
regions due to the high dynamic range nature of the BRDF
values. The error was computed as:

Error =

√∑N
i=1(

ρi,est−ρi,ref
ρi,ref

)2

N
, (4)

where N is the number of samples, ρi,est is the recon-
structed BRDF of the sampling point i, ρi,ref is the ref-
erence BRDF of the sampling point i.

Each BRDF in the MERL data base was converted to the
PDV parameterization at a resolution of 90 × 90 × 360 for
the θr, dp, and φr parameters, respectively. For each ma-
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Figure 7. The plots show the reconstruction errors compared to the BRDF references. Each line represents the errors based on specific
angles of θdpr = 45◦, 65◦, 70◦, 75◦.

terial we selected the samples corresponding to the F (θr)
and G(dp) basis functions to reconstruct the full BRDFs
by using Equation 3. Thus, we simulated the measurement
configuration illustrated in Figure 6. The G(dp) factor was
measured at four different θr angles, θdpr = {45◦, 65◦, 70◦,
75◦}. To measure the reconstruction error we, for each
BRDF, uniformly sampled N = 3.6 million samples over
the hemisphere in standard spherical coordinates and com-
pared the reconstruction to the reference data in the data
base. The plots in Figure 7 show the reconstruction error for
all materials in the MERL data base for four θdpr angles used
in the measurement of G(dp). The results show that our
approach can be used to measure and reconstruct isotropic
BRDFs as two separable 1D functions in the PDV parame-
terization with very small errors. Most reconstruction errors
lie below 0.05%, except for when θdpr = 45◦. The variation
between the errors obtained using the different θdpr angles
could be explained by several reasons including a loss of
information in the factorization of the PDV 2D matrix into
two 1D functions, noisy data or possibly interpolation arti-
facts in the conversion from measurements to the Half-Diff
representation used in the MERL data base.

Rendering results: Figure 8 shows six examples of re-
constructed BRDFs and its luminance difference compared
to its reference BRDF. In Figure 8, we selected to use
θdpr = 70◦, as it gives the lowest reconstruction error. The
dark blue color of the luminance differences represents the
lowest error and the level of white color represents higher
error. We see that our method works best on metallic mate-
rials or high glossy materials such as gold-metallic-paint3
and black-obsidian. However, our method still performs
quite well on diffuse materials such as white-fabric even

though the luminance of the reconstructed BRDFs is lower
than the luminance of the reference BRDFs.

6. Conclusions and Future works

This paper presented a novel approach of isotropic
BRDF reconstruction from simple measurements. It was
assumed that the PDV parameterization can be used to de-
compose logarithmically transformed isotropic BRDFs into
three univariate functions, and that the PDV parameteriza-
tion allows us to represent isotropic BRDFs with two pa-
rameters. We have shown that a simple measurement setup
can recover the dense BRDF data by using our BRDF re-
construction approach. Our simple measurement setup can
be used to build efficient measurement devices for isotropic
BRDFs. The error plots show that the relative RMS errors
between the reconstructed BRDFs and the reference BRDFs
are relatively low. Moreover our rendered results of the re-
constructed BRDFs are visually very similar to the refer-
ence BRDFs.

Future work will be directed towards improving the
method to perform better on diffuse materials. We would
also like to extend this concept to higher dimensional re-
flectance data such as SVBRDFs and employ the PDV pa-
rameterization in applications where BRDFs need to be
characterized in the wild.
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