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Chapter 1: Introduction
Hello, and welcome to “Everything I wanted to know about Fortran, but was afraid to ask.” These notes operate as
an introductory, crash course in Fortran for applied mathematicians. Though you may encounter that Fortran is
seen as antiquated by some, know that Fortran is a fast and efficient language largely used in the applied math and
scientific computing communities. The advantages of Fortran are especially prevalent in vector/matrix operations.

The name Fortran comes from FORmula TRANslation. That is, the language was originally developed for easy
implementation of mathematical formulae, vector and matrix operations in particular. The flexibility of Fortran
to natively handle arrays makes your life much easier when coding basic routines, like matrix-vector products, to
more advanced routines like linear solvers or conjugate gradient.

This introduction serves as an outline of Fortran’s different features. In particular, the notes will mainly focus
on programming in the Fortran95 standard (although some of the functionality discussed in the “Advanced Topics”
Chapter uses more modern Fortran). This is done because the Fortran95 distribution is very stable and supported
by nearly every compiler available. Thus, coding practices for Fortran learned from these notes will easily transfer
between machines or compilers. Know that these notes do not include all aspects of Fortran, but it will be enough
to get up and running, solving problems, and coding with organization. The notes are structured to learn Fortran
through example, with commentary along the way. We color code the discussion of Fortran code examples in the
following way:

• Program structure components are red.

• Variable declarations are green.

• Intrinsic Fortran functions (like sine) are light blue.

• Comments are gray.

• Numbers, written output, and formatting are pink.

Furthermore, we use a set of style conventions to make example codes in the notes easier to read. This does not
affect whether the code compiles, but will make the code more readable and easier to debug. Loops, if
statements, and other nested control sequences are indented with three spaces. The indentations help identify when
each event opens and closes. Also, we capitalize Fortran control structures and variable declarations. We write
variable names in (mostly) lower case and, since variable names in Fortran95 can be as much as 32 characters in
length, we make variable names as descriptive as possible to make the code easy to read/debug. It is important to
always remember: Fortran is not case sensitive, so the variables with the name a and A are the same,
as far as the compiler is concerned.

In Chap. 2, we begin with a couple introductory examples of Fortran programs. This chapter also introduces
how code examples in thiese notes are set-up. For the most part, examples are first introduced as psuedocode which
is then translated into Fortran code that can be compiled. The ability to inspect pseudocode and translate it into
working Fortran code is one of the main goals of this note set.

Chap 3. outlines, in depth, the components of a Fortran program. This includes the data types available to a
program, the control sequences used (like loops), and how to read and write information from the terminal or a
file. We then provide an example of a quadrature method to practice some of the new program components at our
disposal.

Next, in Chap. 4, we examine the organization of a Fortran program. To keep programs from becoming bloated
and hard to debug we split the code into functions and subroutines. This includes introducing some of the intrinsic
functions available in Fortran as well as external functions, i.e., functions that are written by a user. Subroutines
are always written by users. We then show how to pass an external function to another function or program. Next,
we introduce modules, an important concept that allows one to collect similar functions and subroutines in a single
source file. Finally, we outline a few options of how to compile these multiple source files, as the organization
techniques will produce multiple Fortran source files.

In Chap. 5 we demonstrate the ease with which Fortran handles arrays. This includes how to manipulate data
stored in arrays, intrinsic functions, printing, and how to pass arrays to functions or subroutines.
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Chap. 6 introduces object oriented programming in Fortran using modules. To do so we introduce derived types
and demonstrate how to improve the usability of Fortran code contained in modules using interfaces.

In Chap. 7 we cover some of the more advanced features of Fortran. This includes overloading operators (using
interfaces), dynamic arrays, optional input arguments in functions and subroutines, formatted file I/O, recursive
functions, and the associate construct.

Chap. 8 covers some basic philosophy and examples when it come to debugging Fortran code. This includes an
explanation of some of the compiler flags available as well as specific examples of common bugs that can be present
in a scientific computing project implemented in Fortran.

In Chap. 9 we bring everything together in a larger coding project example. By the end of this Chapter we will
implement a one dimensional finite difference style solver for the linear advection equation. The purpose of this
project is to practice the process of begin given a numerical recipe to solve a problem, think about how to divide the
problem apart into smaller pieces, organize a Fortran code around these pieces, and then implement and compile
the project.

Next, Chap. 10 dives deeper into the object oriented capabilities of Fortran. To do so, it introduces some specific,
selected examples useful to implement a discontinuous Galerkin spectral element method (DGSEM) in one spatial
dimension. The extension to multiple dimensions is straightforward. We also provide several implementations to
output data to a file for plotting in different programs.

Finally, in Chap. 11, we introduce the topic of source code management on local and remote repositories using
git. Although not specifically a Fortran topic, source code management is an important component of computer
programming and scientific computing.

1.1 Getting Started
To begin coding in Fortran we’ll need two things:

1. A Fortran compiler.

2. An environment to edit source files.

There are many Fortran compilers available like absoft, ifort, or gfortran. However, the gfortran compiler is
a good first choice because it is free, open source, and can be found on pretty much all versions of Linux, Unix,
and in cygwin for Windows. The binaries are available at http://gcc.gnu.org/wiki/GFortranBinaries along
with installation instructions. However, building the binaries on your own can be a bit of a headache. Therefore,
we provide a short walkthrough and some useful links for the three major OS distributions. For Linux or Mac
it is assumed that compilation will be done using a terminal. For Windows, because there is not a true terminal
environment, an Integrated Development Environment (IDE) is also installed that is used to edit source code as
well as compile using the make utility. The IDE generates any makefiles automatically, so you don’t have to manage
that part of the project. If you want, similar IDEs are available for Linux or Mac as well.

1.1.1 Linux Installation

It is straightforward to install gfortran on a Linux machine (particularly running a distribution like Ubuntu or
Mint) because of the synaptic package manager. Simply open a terminal and type

sudo apt-get install gfortran

enter your password and it will install the binaries of the latest stable release of the compiler for you.

1.1.2 Mac Installation

To install gfortran on an OSX machine you first need to install XCode and the Mac developer tools. A complete
walkthrough of the installation for OSX is provided by David Whipp at https://wiki.helsinki.fi/display/
HUGG/GNU+compiler+install+on+Mac+OS+X.
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1.1.3 Windows Installation

For Windows we will install the Eclipse IDE software with Photran plugins. The IDE will make compilation and run-
ning on a Windows machine much easier. The installation process is lengthy, but a full description and step-by-step
instructions are available at https://wiki.eclipse.org/PTP/photran/documentation/photran8installation.
This also includes instructions on the installation of Cygwin.

1.1.4 Editing Source Files

Now that we have a compiler installed we need a way to edit source code. In the end, for the small examples and
projects discussed in this note set, the editing program you choose is not too important. Pick your favorite among
the different options: Any text editor works to edit source files (like gEdit on Linux, TextEdit on Mac, or notepad
on Windows). There are also developer tools available (like XCode on Mac) or the more barebones terminal based
code editors like vim or emacs.

If you decide to use an IDE like Eclipse there are a few more steps before you are up and running. First, you
need to start a new Fortran project. This creates a repository for all the source files as well as other components
of the program. Eclipse has a built in editor for the source files (with certain features like auto-completion). When
you are ready to compile the program you press the “build all” button. Once the program builds (assuming no
errors are thrown) you press the “run” button to execute the program. There is a small output environment at the
bottom of the Eclipse window that will display information as the program runs.

1.2 Moving from MATLAB to Fortran
These notes are constructed from a point-of-view that the reader is familiar with the basics of computer programming
and scientific computing. Further, the presentation of the notes assumes that the reader is moving from coding and
running programs in MATLAB and wants to learn Fortran. Here we collect some of the major differences (obviously
not all) when we make this move. Throughout the notes we will also note some of the smaller subtle differences
between MATLAB and Fortran.

1.2.1 Compiler Flags

If you are used to coding in MATLAB you may not realize how much flexibility you have when compiling your
source code. Most importantly you can tell the Fortran compiler to optimize (which you can read as “speedup”)
your code. This optimization process is automated with certain compiler flags, but know (at least if you ever move
to a high performance computing (HPC) environment) that it involves loop unrolling, peeling, and splitting, among
other things.

Compiler flags are also available for debugging purposes. If you are used to the graphical debugger in MATLAB
you are in for a surprise. Debugging Fortran is a little more nuanced. Personally, I don’t use a true debugger. I
just use a combination of printing information to the screen and compiler flags to debug my code. We will revisit
some debugging practices and techniques later in Chap. 8.

Under the assumption that we use the gfortran compiler we provide a short description of the some of the
most useful compiler flags. Know that there is a complete list of available compiler flags at http://gcc.gnu.org/
onlinedocs/gcc/Invoking-GCC.html#Invoking-GCC. Some important compiler flags are:

• -o: allows the user to name the executable produced by compilation. If this flag is absent the program is
given the default name a.out

• -O0: No optimization. Useful for debugging purposes.

• -O: Optimize. The compiler tries to reduce code size and execution time, without performing any optimizations
that take a great deal of compilation time.

• -O2: Optimize even more. Performs all optimization of -O as well as all supported optimizations that do not
involve a space-speed tradeoff.

• -O3: Optimize yet more. Turns on all optimizations specified by -O2 with more aggressive management of
memory.
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• -Ofast: Disregards strict standards compliance. Enables all -O3 optimizations. Also enables optimizations
that are not valid for all standard-compliant programs. It turns on -ffast-math which further optimizes
intrinsic functions.

• -fcheck-bounds: Used for debugging. Tells the compiler to examine array bounds closely and inform the
user if the program overruns outside of allocated memory. Especially useful in finding segmentation faults.

Note that optimization usually makes a program faster, but this is not always true.

1.2.2 Plotting Program Output

Another jarring aspect of switching from MATLAB to Fortran is that there is not a native plot command. You
can’t simply display your results while the program is running and inspect them. In fact, you need to print results
to an external file (typically with a specific data format) and then use an independent piece of plotting software
to visualize the results. We’ll outline how to use Fortran to print results to a file in these notes. Three good, free
plotting programs for program data are:

• gnuplot: A simple, terminal based plotter. The syntax can be a little obtuse and Google will be your friend
for the more advanced options.

• matplotlib: A package for Python, this plotting option requires you to learn a little bit of the Python
programming language. One advantage is that this package creates vector graphics, so you can rescale the
images without fear of rasterization (i.e. images won’t look pixelated as you scale them).

• VisIt: Basically a free version of TecPlot made by Laurence Livermore National Laboratory (LLNL). It is
available for download at http://wci.llnl.gov/simulation/computer-codes/visit. I like this program,
but it is difficult to Google information about because of the name. If you are not specific you will end with
search results like “visit Sweden.” Always include LLNL in any inquiry about VisIt. An advantage of VisIt
is the ease with which you can make movies. Also, it plots all major file types, most importantly TecPlot
files, which makes the transition easier.

We focus more on plotting routines in Chap. 10. There, we present a VistIt implementation in one, two, and
three spatial dimensions as well as examples in matplotliob.

1.3 Further resources
These notes are self-contained and cover many features of Fortran, but there is always more to learn. Two excellent
books that offer in-depth discussions of Fortran:

Fortran 90 Programming (International Computer Science Series), by T. M. R. Ellis, I. R. Phillips, and
T. M. Lahey. Offers comprehensive tutorials and information about programming in Fortran.

Numerical Computing With Modern Fortran (Applied Mathematics), by R. J. Hanson and T. Hopkins.
This is a more advanced book that highlights Fortran in the context of HPC and how to develop scalable imple-
mentations in modern Fortran on supercomputers.

Now, with the gfortran compiler, a preferred method for source code creation and editing, and what
to expect when moving away from MATLAB you are ready to learn Fortran!
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Chapter 2: The Program
Let’s jump right into Fortran programming. We start with a simple introductory example to learn program structure,
some basic Fortran syntax, and how to compile/run a Fortran program. These notes are designed to teach the
Fortran95 standard. However, any source code files will end with a .f90 extension (as is the standard in the
Fortran community).

2.1 Example: Adding Two Integers
Below we see the pseudocode for a program that adds two fixed integers.

Algorithm 1: A First Example: Add two integers and print

Procedure A First Example
i← 3
j ← 7
k ← i+ j
Print k
End Procedure A First Example

Now we translate this pseudocode into functional Fortran code, which we save as the program “firstExample.f90’.
firstExample.f90

PROGRAM firstExample
IMPLICIT NONE
INTEGER :: i,j,k

!
i = 3
j = 7
k = i + j
WRITE(*,*)k

!
END PROGRAM firstExample

A few quick notes on this simple example:

1. An executable source file will start with PROGRAM PROGRAM NAME and end with END PROGRAM
PROGRAM NAME

2. Fortran is a sequential language, thus we always declare variables, like INTEGER at the top of the program

3. The variable declaration will always indicate the type followed by two colons and then the variable name, e.g.,
INTEGER :: i,j,k

4. We’ll look at more on I/O in Chap. 3, but for now know that in the WRITE statement the first * means “print
to terminal” and the second * means that the output is “unformatted”. We discuss formatted writing of data
later in Chap. 7.4.2. In Fortran, an alternative to the WRITE statement above is the PRINT* command to
produce an unformatted output of information to the terminal window.

5. Again, be aware that Fortran is not case sensitive. So the output for firstExample.f90 would be the
same, for example, if we had written J = 7.

It is important to note that just after the program is initialized we will always include the command
IMPLICIT NONE.

5



PROGRAM program_Name
IMPLICIT NONE
...

The command IMPLICIT NONE makes the use of undeclared variables illegal, leading to compiler errors. In
Fortran, any undeclared variables that begin with letters between i − n or I − N are cast to integers, all other
undeclared variables are cast to single precision. This can lead to bugs and lots of headaches, so we always turn
off this feature by including IMPLICIT NONE.

Note, turning off implicit variable typing should be done within any and all procedures including the main
PROGRAM as well as any MODULE, SUBROUTINE, or FUNCTION. The compiler flag -fimplicit-none in
gfortran deactivates implicit typing globally. However, such a flag is not available in all Fortran compilers (for
example no such flag exists in ifort). Thus, it is best practice to turn off implicit typing manually.

Once we save our simple program as firstExample.f90, we are ready to run. We open a terminal and move to
the correct folder, where the source file is located, and then type in the command line:

firstExample.f90 - Commands and Output
gfortran firstExample.f90 -o firstExample
./firstExample

10

Let us breakdown what was just done and gather general information on how to run Fortran programs:

1. When we run the compiler (the gfortran command above) it creates an executable file

2. The compiler flag -o lets us name the executable, in this case “firstExample”. If you don’t use this flag the
executable has the default name “a.out”

3. To run the executable from the command line we use the ./command

2.2 Example: Add Two Real Numbers (in Double Precision)
Let’s do another quick example to reinforce the Fortran syntax we just learned. Also, this example will introduce
a general approach in Fortran used to manipulate real numbers. We have the pesudocode for a routine that adds
two double precision real numbers:

Algorithm 2: Real Numbers: Add two real numbers and print

Procedure Real Numbers
x← π
y ← 2.5
z ← x+ y
Print z
End Procedure Real Numbers

Now we translate this second piece of pseudocode into workable a program. We save this program as “realAdd.f90”.

realAdd.f90
PROGRAM realAdd

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP) :: x,y,z
REAL(KIND=RP),PARAMETER :: pi = 4.0_RP*ATAN(1.0_RP)

! Let’s add some real numbers
x = pi
y = 2.5_RP
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z = x + y
PRINT*,z

!
END PROGRAM realAdd

There are a few important aspects of this implementation for adding two real numbers that require discussion:

1. We define the number of digits of accuracy for real numbers in a rather unusual way. This is important to
maintain calculations in double precision, which has sixteen digits of accuracy (so we input 15 in the intrinsic
function because we start counting at 0). In this way, we define a parameter to indicate what is meant within
a Fortran program by “real precision” called RP. Then we specify the accuracy of the REAL data type by
including KIND=RP.
In Fortran, if we don’t specify a KIND and simply declare a real number with REAL::x the compiler defaults
the data type of x to be a single precision value. We note that the flag -fdefault-real-8 will tell the
compiler to “upgrade” standard REAL declarations to double precision as well as any non-double constants
like 1.0. Just like with implicit typing, such flags are different across compilers. Thus, it is best to specify
the KIND manually so it is always explicitly known what type a variable has along with its precision.
Note, there is a DOUBLE PRECISION variable type in Fortran, but don’t use it. It is deprecated. The
reason is because double precision means different things on different machines. However, if you specify 16
digits with the intrinsic function SELECTED REAL KIND, you know that no matter what machine you use
that you’ll always have that many digits of accuracy. Thus, it makes your code portable and easy to change
(if, say, you wanted 32 digits of accuracy you would simply change 15 to 31).

2. What does it mean for a variable to be a PARAMETER? It means, we define a number, in this case π, that will
remain constant throughout a run of the program. One may be tempted to hard-code π to a certain number
of digits, e.g. π = 3.14159265359. However, on different machines with different precisions you may lose
accuracy when a hard-coded constant is truncated. To maintain portability of code try not hard-code any
constants. An accurate value of the constant π is easily recovered from standard trigonometric properties.
But sometimes it may be unavoidable to truncate and hard-code a constant’s value due to a complicated
definition such as with the Euler-Mascheroni constant γ (it is an improper integral).

3. Inside the program instructions, how do we tell the compiler to treat a fixed number (often called a literal) as
a REAL(KIND=RP)? If we want the compiler to treat this number as a double precision value we must write
1.0_RP. If we only type 1 in the program, then the compiler will treat 1 as an integer. If we type 1.0, then the
compiler treats 1.0 as a single precision value. Both of these treatments of literals can introduces spurious
round-off errors in a program. As a final note, the syntax 1.d0 will treat the literal correctly as a double
precision value. However, in these notes we prefer the explicit attachment of _RP to specify the precision of
literals for clarity as well as flexibility of the code.

4. What’s with all the exclamation points? The exclamation point, !, is the comment character in Fortran. Thus,
anything that appears after an exclamation point is ignored by the compiler. Comments are there to make
the code more readable for the author as well as for other people. Always remember, codes can never have
too many comments so be as liberal with them as you like. It will only make your life easier when you go
back to read code and remember what exactly it does weeks, months, or years down the road.

Finally, we compile and run the second example of adding two real numbers.
realAdd.f90 - Commands and Output

gfortran realAdd.f90 -o realAdd
./realAdd

5.6415926535897931
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Chapter 3: The Elements of a Program
We start this chapter with a couple of laundry lists (often with mini-examples) that outline the data types available
in fortran, the syntax for common control sequences, and simple, unformatted file I/O. After we walk through the
different program elements we will finish the chapter with an example problem from numerical integration.

3.1 Data Types
The most common data types in fortran are:

• INTEGER – Positive or negative whole number

• CHARACTER – Standard text ASCII character with one byte per character

• CHARACTER(LEN=4) – String of a specified length

• LOGICAL – Set to either .TRUE. or .FALSE.

• REAL(4) – Floating point number with 6 significant digits

• REAL(8) – Floating point number with 12 significant digits

• REAL(KIND=RP) – Floating point number with significant digits specified by RP =
SELECTED REAL KIND(15), where 15 yields double precision (16 significant digits)

• COMPLEX(KIND=RP) – Two floating point numbers with significant digits specified by RP

Keep in mind, we can make any of the preceding data types a PARAMETER value in the PROGRAM as well.
Now that we know the data types available in fortran, we need to be careful when variables with different data

types interact. This is because precision can be lost in such manipulations (for example when a REAL and an
INTEGER interact). Note, this is another difference moving away from MATLAB! Let’s examine a few situations
of how fortran handles casting one variable type to another:

typesExample.f90
PROGRAM typesExample

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
INTEGER :: i,j,k
REAL(KIND=RP) :: x,y,z

!
i = 7
j = 4
x = 3.7_RP
y = 4.0_RP
k = j**i
PRINT* ! puts a carriage return for spacing
PRINT*,’4**7= ’,k ! to take a value to a power use the ** operator
k = i/j
PRINT*,’7/4= ’,k ! division with integers always truncates down
k = x
PRINT*,’automatic conversion 3.7 to INT= ’,k ! always truncated towards zero
z = i
PRINT*,’automatic conversion 7 to REAL= ’,z ! converts integer to real
z = i/j
PRINT*,’automatic conversion 7/4 to REAL= ’,z ! truncates then converts to real
z = i/4.0_RP
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PRINT*,’automatic conversion 7/4.0_RP to REAL= ’,z ! retains accuracy of a real
z = 7.0_RP/j
PRINT*,’automatic conversion 7.0_RP/4 to REAL= ’,z ! retains accuracy of a real
z = REAL(i,RP)/REAL(j,RP) ! compiler to treat the integers as reals
PRINT*,’automatic conversion 7_RP/4_RP= ’,z

!
END PROGRAM typesExample

We compile and run this example to illustrate how the different variable types are cast between one another. The
output of the program also serves to clarify the meaning of the comments above.

typesExample.f90 - Commands and Output
gfortran typesExample.f90 -o typesExample
./typesExample

4**7= 16384
7/4= 1
automatic conversion 3.7 to INT= 3
automatic conversion 7 to REAL= 7.0000000000000000
automatic conversion 7/4 to REAL= 1.0000000000000000
automatic conversion 7/4.0_RP to REAL= 1.7500000000000000
automatic conversion 7.0_RP/4 to REAL= 1.7500000000000000
automatic conversion 7_RP/4_RP to REAL= 1.7500000000000000

3.2 Control Sequences
Next, we give a list of the most common control sequences available in fortran:

• IF/THEN/ELSE – Execute certain pieces of code based on a logical condition(s). The main logical logical
operators are:

~ Less than: < or .LT.
~ Less than or equal to: <= or .LE.
~ Greater than: > or .GT.
~ Greater than or equal to: >= or .GE.
~ Equal to: == or .EQ.
~ Not Equal: /= or .NE.
~ Logical and: .AND.
~ Logical or: .OR.
~ Logical not: .NOT.

IF/THEN/ELSE Statement
IF (i.EQ.7) THEN

do something
ELSE IF ((i.LT.5).AND.(i.GT.2)) THEN

do something else
ELSE

and now for something completely different
END IF

If the condition only needs to execute a single expression the IF statement can be shortened and does not
need a THEN qualifier. Also, this short example demonstrates how a LOGICAL type variable can be used.
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Shortened IF Statement
j = 6
isPositive = .TRUE.
IF (isPositive) PRINT*,j

• DO loops – Perform a piece of code in the loop structure a specified number of times. The bounds of the loop
are INTEGERS.

DO Loop
DO i = 1,13

PRINT*,i
END DO! i
! Loops can also run backwards
DO j = 9,0,-1 ! This means step backwards from 9 to 0, decrement by 1 each iteration

PRINT*,j
END DO! j
! In general, we have the bounds on the loop
DO j = start_value,end_value,increment ! the default increment is 1

CODE
END DO! j

After the END DO it is helpful to note in a comment which iteration variable stops. This is purely a
convention, but it helps organize larger loop nests for debugging purposes.

Loop Nest
DO i = 1,4

DO j = 2,5
DO k = 6,0,-2

PRINT*,i*j*k
END DO! k

END DO! j
END DO! i

We note that it is possible in fortran to put multiple items on a single line of code to reduce the size of the
source code when we separate the commands with a semicolon. This can be done when assigning variable
values, initiating loop nests, etc. In practice as well as throughout these notes we do not utilize this feature
because it often makes the source code more difficult to understand. However, for completeness, we mention
this possibility as one might encounter it when working on larger fortran projects. The following condensed
loop nest will produce the same output as the previous loop nest:

Condensed Loop Nest
DO i = 1,4; DO j = 2,5; DO k = 6,0,-2

PRINT*,i*j*k
END DO; END DO; END DO

• DO WHILE loops – Perform a piece of code in the loop structure until a logical condition is met.
DO WHILE Loop

b = 2
DO WHILE (b.NE.128)

b = b*b
PRINT*,b

END DO

• EXIT – Exit out of the current DO loop based on a logical argument.
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EXIT Example
DO i = 1,35

PRINT*,i
IF (i**2.GT.55) THEN

EXIT
END IF

! alternatively could use shortened logical IF (i*i.GT.55) EXIT
END DO! i

• CYCLE – Increment to the next iteration in a DO loop based on a logical argument.
CYCLE Example

DO i = 1,6
IF (i.EQ.4) THEN

CYCLE
END IF
PRINT*,i

END DO! i

• STOP – This statement will halt the program. One example of its use is to prevent an infinite DO WHILE
loop inside an iterative method. Once a program reaches a set maxIts the program ceases.

STOP Example
numIts = 0
maxIts = 500
DO WHILE (err.GT.tol) ! check the error against a preset tolerance threshold
...
perform an iterative method like Gauss-Seidel
...
numIts = numIts + 1
IF (numIts.GT.maxIts) THEN

PRINT*,’Iteration failed to converge’
STOP

END IF
END DO

3.3 Input/Output Constructs
Next, we examine the different options fortran offers for the input of data into a program to be operated on
and output of data to the screen or to a file for visualization or other analysis. For now this section only covers
unformatted read/write commands, but know that it is possible to format the data to suit one’s needs. We cover
formatted reads/writes in Chap. 7 Advanced Topics, as it is somewhat complicated. For the tasks in this note set
as well as most fortran projects unformatted I/O will be sufficient.

3.3.1 I/O to the Screen

• Input – We can ask the user to provide information from the terminal. To do so, we use a READ(*,*)
command to inform the PROGRAM that it should expect to read-in and store data from the screen inputted
by the user. Again, the first * means “the screen” and the second * means “unformatted”.

readScreenExample.f90
PROGRAM readExample

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
INTEGER :: j
REAL(KIND=RP) :: x
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CHARACTER(LEN=20) :: name
!

READ(*,*)’Enter an integer’,j ! if you don’t input an integer, an error is thrown
READ(*,*)’Enter a real number’,x
READ(*,*)’Enter your name’,name

!
WRITE(*,*)j,x,name

!
END PROGRAM readExample

• Output – We’ve used this a couple times already, but it is restated here for reference purposes. It is important
to print to the screen to inform the user what is happening in the PROGRAM, what part of the execution
the PROGRAM has reached, etc. Also, we often print to the screen for debugging purposes. For example,
we print variable values set during execution to check if they make sense in the context of the problem begin
solved. Because output to the screen is used primarily for these kind of sanity checks, we only worry about
unformatted output to the screen.

Unformatted Printing to Screen
a = 24601
! Both commands will produce the same output
PRINT*,’The number is’,a
! or
WRITE(*,*)’The number is’,a

3.3.2 I/O to a File

Having the user input runtime values might seem like a good idea at first. However, if you are actively working on a
PROGRAM debugging and/or adding features it is extremely annoying to constantly input data for every, single,
run. This is one reason putting runtime values into a file is useful as the user can quickly change one (or a few)
values and immediately run the PROGRAM again to see the effect. Also, as mentioned previously, it is important
to write the data produced by a PROGRAM to a file. This allows the user to analyze the data, create figures, etc.
more easily than trying to interpret a large amount of data that is simply spat out onto the screen.

In order to input or output data to a file we first have to tell the PROGRAM to open a file. To do so, we use the
OPEN command, which assigns an integer (sometimes called the fileUnit) to reference a file’s name. If the file
to be opened does not exist the PROGRAM will create an empty instance of the file with the given extension and
assigned name. The file will be created in whatever directory contains the executable. It is also possible to open a
file contained in a sub-folder from the directory containing the executable. However, the folder must already exist.
If the file does not exist inside the sub-folder, then the PROGRAM will create the file just as before. If you try
and open a file from a folder that does not exist, e.g. OPEN(13, FILE=’folder/file.dat’), the source code will
compile but at runtime the execution will throw an error.

Error Opening a File from a Non-Existent Folder
Fortran runtime error: Cannot open file ’folder/file.dat’: No such file or directory

When we go to open a file for I/O it is important to not set the fileUnit to be 0, 5 or 6 as most compilers
reserve those values in the following way:

• Standard Error is 0 – Used by programs to output error messages or diagnostics.

• Standard In is 5 – Used by programs to input data from the terminal, similar to READ(*,*).

• Standard Out is 6 – Used by programs to output data to the terminal, similar to WRITE(*,*).

Always remember, anytime you OPEN a file you should CLOSE it once you are done reading/writing. In particular,
this is important because closing a file will free up the fileUnit for reuse elsewhere in the PROGRAM. Now, we
can examine examples of unformatted I/O in Fortran.
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• Input – To read in from a file we replace the first * in the READ statement with the fileUnit that has
been assigned to a particular file name. By default Fortran reads in data line-by-line, advancing to a new line
after each variable that is read. In Chap. 7.4 we examine how to alter this behavior. For the purpose of this
example we assume that we have a file with the data

testInput.dat
7
34.4635

Unfortunately, we cannot put comments into testInput.dat to indicate what the values represent or where
they should be assigned. We will revisit file reading later in Chap. 7.4 where we will develop nice file reading
routines useful across Fortran projects. Note that Fortran will check if the data read-in from a file matches
the data type of the variable the PROGRAM tries to save it in. If there is a mismatch Fortran will throw
an error and the execution will stop. For example, if we tried to read the value 34.4635 from testInput.dat
into the integer j we get the error of the form

Error Read-In Data Mismatch
Fortran runtime error: Bad integer for item 1 in list input

For now we have the simple functionality of reading from a file.
readFileExample.f90

PROGRAM readFileExample
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
INTEGER :: j
REAL(KIND=RP) :: x

!
OPEN(UNIT=33,FILE=’testInput.dat’)
READ(33,*)j,x
CLOSE(33)

!
PRINT*,j,x

!
END PROGRAM readFileExample

• Output – Similar to the input example we replace the first * in the WRITE statement with the fileUnit.
Note, to output data to a file we must use a WRITE statement. The PRINT statement is only able to output
information to the screen.

writeFileExample.f90
PROGRAM writeFileExample

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP) :: x,y,z

!
x = 6.25_RP
y = 1.15_RP
z = x + y

!
OPEN(UNIT=75,FILE=’testOutput.dat’)
WRITE(75,*)z
CLOSE(75)

!
END PROGRAM writeFileExample
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3.4 Example: Quadrature
We wrap-up this discussion with an example from numerical integration. For simplicity, this example will utilize
I/O from the screen. Although, it is a good exercise to think about: How would we convert this example to use an
input file?

Let us use a Riemann sum with left endpoints to approximate the value of the definite integral

I =
∫ b

a

x2

3 dx ≈
N−1∑
i=0

x2
i

3 ∆x.

In order to approximate the value of this integral, we must decide how to divide apart the interval [a, b] and
distribute the sample points xi, i = 0, . . . , N − 1. The simplest distribution of sample points is a uniform spacing
such that xi = a+ i∆x, with

∆x = b− a
N

.

We store the approximate integral value in the real variable “sum” and display the result to the screen. Next, we
have pseudocode of the integral approximation, for a given value of a, b, and N :

Algorithm 3: Left Riemann Sum: Approximate an integral with the left Riemann sum.

Procedure Left Riemann Sum
Input: a, b,N

∆x← b−a
N

sum← 0
for i = 0 to N − 1 do

xi ← a+ i∆x
sum← sum+ (x2

i /3) ·∆x

Output: sum

End Procedure Left Riemann Sum

We next provide a Fortran implementation that reads in the values for a, b, and N from the screen and outputs
the resulting integral approximation to the screen.

leftRiemann.f90
PROGRAM leftRiemann

IMPLICIT NONE
INTEGER,PARAMETER :: RP =SELECTED_REAL_KIND(15)
INTEGER :: i,N
REAL(KIND=RP) :: a,b,x_i,dx,sum

!
WRITE(*,*)’ Enter a value for a, b, and number of sub-rectangles N’
READ(*,*)a,b,N ! You don’t include the RP when inputting real numbers

! For example, just type -2.0,4.0,25
dx = (b-a)/N
sum = 0.0_RP
DO i = 0,N-1

x_i = a + i*dx
sum = sum + dx*(x_i*x_i/3.0_RP) ! could alternatively use x_i**2/3.0_RP

END DO! i
!

WRITE(*,*)’ The integral is approximately’,sum
!
END PROGRAM leftRiemann
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Note, that we hard-coded the function that we wished to integrate. In the next Chapter, we will learn how to pass
an arbitrary function f(x) into the program. We save our program as leftRiemann.f90 and run the program to find:

leftRiemann.f90 - Commands and Output
gfortran leftRiemann.f90 -o leftRiemann
./leftRiemann

Enter a value for a, b, and number of sub-rectangles N
-2.0,4.0,25

The integral is approximately 7.5391999999999992

We can compare the Riemann approximation of the integral to the known solution which is

I =
∫ 4

−2

x2

3 dx = x3

9

∣∣∣∣∣
4

x=−2

= 8.
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Chapter 4: Program Organization
Now that we know the basics of how to code in Fortran we will learn how to break a program into manageable
parts. This makes code easier to read, easier to test, easier to debug, and easier to reuse. We hit the high notes
of how to use the FUNCTION, SUBROUTINE, and MODULE constructs to break-up the workflow of a program.
Here is a quick way to remember the difference between each type of construct:

• FUNCTION takes in multiple arguments and returns a single argument.

• SUBROUTINE takes in and returns multiple arguments.

• MODULE is a file that contains variable declarations, functions, and subroutines that can be made available
to a program or another module.

When we discuss the FUNCTION and the SUBROUTINE we include special attributes that tell the compiler
how to handle arguments passed to them by the user. There are three options:

• INTENT(IN) – Use with functions and subroutines. It informs the compiler that an argument may not be
changed by the function/subroutine.

• INTENT(OUT) – Use with subroutines. It informs the compiler that an argument will return information
from the subroutine to the calling procedure. The argument’s value is undefined on entry to the procedure
and must be given a value by some means.

• INTENT(INOUT) – Use with subroutines. It informs the compiler that an argument may transmit infor-
mation into a subroutine, be operated upon (possibly even overwritten), and then returned to the calling
procedure.

4.1 Functions
A FUNCTION in Fortran is a procedure that accepts multiple arguments and returns a single result. They come
in two flavors intrinsic and external.

4.1.1 Intrinsic Functions

Intrinsic functions are built-in functions that do not need declared. There are lots of intrinsic functions available
(a quick Google search reveals as much), some of them are

• EXP – exponential function

• SIN – sine, argument in radians (other trig functions available as well)

• ASIN – arcsine, argument in radians (other inverse trig functions available as well)

• LOG – natural logarithm

• LOG10 – common logarithm (base 10)

• ABS – absolute value

• SIGN – sign transfer function. This is a function of two variables with the definition

SIGN(x, y) =
{

ABS(x), if y ≥ 0,
−ABS(x), if y < 0.

The practical effect of this function is that SIGN(x, y) has the absolute value of x, but has the sign of y. Thus,
the sign of y is transferred to x.
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4.1.2 External Functions

These are procedures written by a user that can be called by another PROGRAM (or FUNCTION or SUBROU-
TINE). We’ll write the external function and the PROGRAM that cals it in separate files. For this example we
write a function to evaluate

f(x) = x3 − x+ cos(x).

First, we write the FUNCTION
function.f90

FUNCTION f(x)
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP) :: f

!
f = x**3 - x + COS(x)

!
END FUNCTION f

In function.f90 we have a variable f with the same name as the FUNCTION. This is a special variable, known
as the RESULT variable. It is the means by which a FUNCTION returns information to a calling procedure.
Always remember that every FUNCTION must contain a variable that has the same name as the FUNCTION,
and this variable must be assigned. In truth, the RESULT variable can have a different name from the function
provided special syntax is invoked (explored in Chap. 7 Advanced Topics). But, for simplicity, we will use matching
FUNCTION and RESULT variable names in this Chapter.

Next, we write the main program that invokes the function f(x).
functionMain.f90

PROGRAM functionExample
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP) :: x,y
REAL(KIND=RP) :: f

!
x = 3.0_RP
y = f(x)
PRINT*,y ! the result is 23.010007503399553

!
END PROGRAM functionExample

Now that we have these two Fortran source files, how do we compile the program? We see that the main
PROGRAM has a dependency of another source file that contains the FUNCTION f(x). How do we ensure that
the main PROGRAM has access to the other user written source code procedures? It turns out we have several
options for compilation. We can:

1. Compile the files all at once on the command line. Note the main file functionMain.f90 depends on a
FUNCTION contained in function.f90 file. Therefore, we put function.f90 first in the compilation list
and the main PROGRAM file last.

Compile all files at once
gfortran function.f90 functionMain.f90 -o functionExample

2. Compile the files one at a time using the command line. The compiler flag -c tells gfortran to compile a
piece of code, but do not create an executable. This creates an additional file with a .o extension. We do
the same to compile the main PROGRAM generating another .o file. When we go to compile the source
to generate an executable we note that there is still a dependency of the main source file on the other. To
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generate an executable of this PROGRAM we include the pre-compiled pieces of source code (in their proper
order).

Compile files on at a time
! the -c flag means ‘compile’ but don’t create an executable
gfortran -c function.f90
gfortran -c functionMain.f90
gfortran function.o functionMain.o -o functionExample

3. Compile using a make file. For this example, one of the first two options are straightforward to compile the
code and create an executable. However, once a Fortran project has a lot of source files with intertwined
dependencies it becomes unwieldy due to the nature of inheritance. Inheritance, essentially, boils down to a
check: if a program calls a function, then the function needs compiled before the program. A make file makes
the compilation of many source files simple because it automatically detects inheritance and which files need
compiled. Later, in Chap. 4.4.1, we cover make file construction.

In general, a function in Fortran has the form:
General Function Format

FUNCTION function_name( passing arguments )
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
data_type,INTENT(IN) :: arguments that shouldn’t be changed
data_type :: any arguments that can be changed
data_type :: function_name

! Local variables
data_type :: available locally, calling procedure doesn’t know of

these variables
...
code

!
END FUNCTION function_name

4.2 Subroutines
Subroutines are more general than functions as they allow multiple input arguments and output results. However,
we must be diligent and assign the correct INTENT of each argument in order to avoid bugs. Sometimes the the
compiler will detect that an INTENT is incorrectly assigned and other times the compiler will not notice. This
partially depends on the level of optimization as well as the types of compiler warnings activated by certain flags.
Because we cannot always trust the compiler to detect a mistake in INTENT, it is best to manually keep track.

Let’s start with a simple SUBROUTINE example that mimics the FUNCTION we just wrote.
subroutine.f90

SUBROUTINE f(x,y)
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP),INTENT(OUT) :: y

!
y = x**3 - x + COS(x) ! alternatively could use y = x*x*x - x + COS(x)

!
RETURN

END SUBROUTINE f

In subroutine.f90, we have an argument that transmits the value of x into the subroutine and an argument y that
returns information to the calling program. Note that the INTENT of each input argument matches accordingly.
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Also, a subroutine includes the RETURN command, which passes control of the execution back to the calling
procedure once the SUBROUTINE is completed.

Next, we implement another version of the main PROGRAM that calls the SUBROUTINE.
subroutineMain.f90

PROGRAM subroutineExample
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP) :: x,y
REAL(KIND=RP) :: f

!
x = 3.0_RP
CALL f(x,y)
PRINT*,y ! the result is 23.010007503399553

!
END PROGRAM subroutineExample

The two source files for the SUBROUTINE example are compiled identically to the FUNCTION source code
example (modulo file names). This is because the dependency of the source files between the two examples didn’t
change. Only the Fortran syntax did.

In general, a subroutine in Fortran has the form:
General Subroutine

SUBROUTINE subroutine_name( passing arguments )
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
data_type,INTENT(IN) :: arguments that shouldn’t be changed
data_type,INTENT(INOUT) :: arguments that may be changed
data_type,INTENT(OUT) :: arguments for output only

! Local variables
data_type :: available locally, calling procedure doesn’t know of

these variables
...
code

!
RETURN

END SUBROUTINE subroutine_name

4.3 Passing Functions
Let’s return to the example of using the left endpoint quadrature rule to approximate a definite integral. Recall
we had to hard code the function we wanted to integrate. Now, however, with our knowledge of functions we can
write a general quadrature routine and pass in different functions to integrate.

We divide the program into smaller pieces to help organize our thoughts as well as understand the dependencies
between source files. We’ll write two functions to integrate, the left hand rule for approximating a Riemann integral,
and then a driver to collect the quadrature results. Let’s consider two functions

f(x) = ex − x2 and g(x) = sin(x)− cos(x),

with corresponding source code
functions.f90

FUNCTION f(x)
IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP) :: f
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!
f = EXP(x) - x**2 ! Alternatively could use x*x, faster than the "power" command

!
END FUNCTION f
!
FUNCTION g(x)

IMPLICIT NONE
INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP) :: g

!
g = SIN(x) - COS(x)

!
END FUNCTION g

Next, we write a function that implements the left point rule quadrature method.
quadratureRules.f90

FUNCTION leftHandRule(a,b,N,func)
IMPLICIT NONE
INTEGER ,PARAMETER :: RP = SELECTED_REAL_KIND(15)
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),INTENT(IN) :: a,b
REAL(KIND=RP),EXTERNAL :: func
REAL(KIND=RP) :: leftHandRule

! Local Variables
INTEGER :: i
REAL(KIND=RP) :: dx,x

!
dx = (b-a)/N
leftHandRule = 0.0_RP
DO i = 0,N-1

x = a + i*dx
leftHandRule = leftHandRule + func(x)*dx

END DO! i
!
END FUNCTION leftHandRule

We applied the EXTERNAL attribute to the func input argument, which informs the compiler that the argument
is a REAL FUNCTION and not a REAL variable. This, in effect, allows us to pass a function to another function.

Finally, we write a driver for the quadrature program.
QuadExample.f90

PROGRAM Quadrature
IMPLICIT NONE
INTEGER ,PARAMETER :: RP = SELECTED_REAL_KIND(15)
INTEGER ,PARAMETER :: N = 150
REAL(KIND=RP),PARAMETER :: a = -1.0_RP, b = 2.0_RP
REAL(KIND=RP) :: Integral
REAL(KIND=RP),EXTERNAL :: leftHandRule,f,g

!
WRITE(*,*)
Integral = lefthandRule(a,b,N,f)
WRITE(*,*)’Approximation for f(x) integral: ’,Integral
WRITE(*,*)
Integral = leftHandRule(a,b,N,g)
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WRITE(*,*)’Approximation for g(x) integral: ’,Integral
!
END PROGRAM Quadrature

We finish the example by providing the output of the quadrature program for the two functions f(x), g(x).
QuadExample - Commands and Output

gfortran functions.f90 quadratureRules.f90 QuadExample.f90 -o quad
./quad

Approximation for f(x) integral: 3.9809989288432961

Approximation for g(x) integral: -0.82136496727329411

4.4 Modules
Modules are similar to classes in C++. With modules we can easily organize code, allow for code reuse and obtain
additional benefits we will discuss later (in Chap. 6). Modules are extremely useful and powerful and we will only
scratch the surface of what modules can do. While source files can contain multiple modules or you can split one
module between multiple files don’t. Follow the philosophy of one file = one module.

Modules have the general structure
General Module Structure

MODULE module_name
! variable definitions
CONTAINS
! functions and subroutines
END MODULE module_name

We briefly note that there is the option in a module to make data or routine PUBLIC or PRIVATE. If you set
something to be PRIVATE than only the current module has access to it. Even if another module uses the current
module anything set to PRIVATE will be “invisible” in some sense. The opposite is PUBLIC, which means that
the data or routine is available for use outside the current module. By default everything in a module is set to be
PUBLIC. This issue is more familiar to C/C++ programmers and is related to the issue of scope, which is a word
to describes which routines have access to data or other routines at a given point in the code.

Let’s create a simple module that will make commonly needed constants available across a Fortran project.
Thus far, in every FUNCTION, SUBROUTINE, and PROGRAM we’ve had to declare

INTEGER,PARAMETER :: RP = SELECTED_REAL_KIND(15)

It would be nice if we could always have the precision definition available to all procedures. We can use a module
to achieve this goal. For good measure we’ll also include the constant π, just in case we need it.

Constants.f90
MODULE Constants

IMPLICIT NONE
INTEGER ,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP),PARAMETER :: pi = 4.0_RP*ATAN(1.0_RP)

END MODULE Constants

Note that we still use IMPLICIT NONE in the module. Also, since the module Constants.f90 contains no functions
or subroutines we omit the CONTAINS command.

Now in a main program (or a different module) we USE the module Constants.f90 to grant other pieces of
source code access to its variables.
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main.f90
PROGRAM main

USE Constants
IMPLICIT NONE
...
code

END PROGRAM main

Notice we use the module before we invoke IMPLICIT NONE in main.f90. Also, we still use IMPLICIT NONE
everywhere to ensure that implicit typing is always turned off.

To compile with modules is similar to compiling multiple .f90 files, we simply have to worry about dependency
and inheritance. Again, there is the option of compiling all files at once or individually. However, since we usually
have more than a couple module (or source) files, there is an easier way to compile. We use makefiles.

4.4.1 Compiling Source Code with Makefiles

Makefiles are special format files that, together with the make utility, help automatically compile source code, get
the correct dependencies and linking, and manage programming projects. A makefile has the basic components of
defining the compiler to be used, any compiler flags, the name of the compiled executable, and then any objects to
be built and their dependencies. Writing makefiles by hand is very tedious and we do it here only as an example.
This discussion also reveals an advantage of using an IDE like Eclipse, because the makefile is automatically
generated.

Writing the syntax for a general makefile would be very unwieldy, confusing, and probably look like something
found on the ship at Roswell. So instead, let’s learn through an example. We’ll create a makefile for the quadrature
program written earlier in this chapter. The file name is Makefile. We state the compiler, any flags, and executable
name at the top of the file, name the objects to built, and then state each source file to compile as well as any
dependencies. The pound symbol # is the comment character for makefiles. We’ll colorize the makefile to facilitate
its readability. Also, we update the organization of the source files a bit and include the Constants module.

Makefile
F90 = gfortran
FFLAGS = #-O3, this is an optimizer which makes loops more efficient
EXECUTABLE = quad
# Object Files for build
OBJS = \
Constants.o \
functions.o \
quadratureRules.o \

$(EXECUTABLE) : $(OBJS)
$(F90) $(FFLAGS) -o $(EXECUTABLE) ./QuadExample.f90 $(OBJS)

# Object dependencies and compilation
Constants.o : ./Constants.f90

$(F90) $(FFLAGS) -c ./Constants.f90

functions.o : ./functions.f90 \
Constants.o

$(F90) $(FFLAGS) -c ./functions.f90

quadratureRules.o : ./quadratureRules.f90 \
Constants.o

$(F90) $(FFLAGS) -c ./quadratureRules.f90

# Utility targets
.PHONY: clean
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clean:
rm *.o *.mod
rm quad

Now we show how to use a makefile to compile the program. If the make file has the name Makefile, then we
simply type the command “make”. It is also possible to give the make file a name, e.g. quad.mak where we use the
-f flag to specify the file name “make -f quad.mak”.

Makefile - Commands and Output
make

gfortran -c ./Constants.f90
gfortran -c ./functions.f90 Constants.o
gfortran -c ./quadratureRules.f90 Constants.o
gfortran -o quad ./QuadExample.f90 functions.o quadratureRules.o

./quad

Approximation for f(x) integral: 3.9809989288432961

Approximation for g(x) integral: -0.82136496727329411

When we compile with make it detects which files have been altered and only compiles them. Thus, on an initial
make all files are compiled. Then, say we implement another function

h(x) = ln(x) cos(2πx)

into functions.f90. Then a subsequent build would give
Makefile - New Function h(x)

make
gfortran -c ./functions.f90 Constants.o
gfortran -o quad ./QuadExample.f90 functions.o quadratureRules.o

Is it possible to do a “fresh” compilation of the PROGRAM? This is possible with the instructions under “Utility
targets” comment in the Makefile. In this case this defines how to “clean” the project folder by removing any
previously compiled .o and .mod files as well as the executable quad. The clean instruction is denoted .PHONY
to specify to the make utility that the target is not a file. Once a project is cleaned the next compilation will touch
all the source files generating new .o, .mod files, and an executable quad.

Clean and Re-Make
make clean

rm *.o *.mod
rm quad

make
gfortran -c ./Constants.f90
gfortran -c ./functions.f90 Constants.o
gfortran -c ./quadratureRules.f90 Constants.o
gfortran -o quad ./QuadExample.f90 functions.o quadratureRules.o

For this simple program a makefile is somewhat overkill. However, once we examine a lager project like in Chap.
9 or deal more with object oriented programming (Chaps. 6 and 10) makefiles are an excellent tool to manage the
organization and compilation of Fortran projects.
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Chapter 5: Arrays
The main advantage that Fortran has over other compiled programming languages is the ease with which it handles
arrays. Because arrays are so easy to handle, Fortran is an ideal choice when writing code implementing mathe-
matical formulae involving vector and matrix operations. Additionally, Fortran offers a great deal of freedom when
indexing arrays, but keep in mind that the default initial index is 1.

It is worth noting that Fortran stores array information by column-by-column, often referred to as
column-major format. Knowing this helps when printing multi-dimensional arrays. Also, understanding how a
programming language stores and manages memory helps write faster, more efficient code. For example, the order
of loops inside a loop-nest has an impact on the speed of memory access and storage within cache. We won’t go into
any more detail on this topic, however it is something to keep in mind when writing programs later in particular
when working with high performance computing (HPC) machines.

Note, since we know modules, that, if necessary, all the code examples from this point on will use the
Constants module.

5.1 Array Basics
In this chapter we will present examples of how to declare, manipulate, and print arrays. First, however, we list
some useful intrinsic functions that we can use with or describe arrays:

• SIZE – Returns the total number of elements in an array.

• SHAPE – Returns the number of elements in each direction in an integer vector.

• LBOUND – Returns the lower index of each dimension of an array.

• UBOUND – Returns the upper index of each dimension of an array.

• MAXVAL – Returns the largest value in the array.

• MINVAL – Returns the smallest value in the array.

• MAXLOC – Returns the location of the largest value in an array.

• MINLOC – Returns the location of the smallest value in an array.

• SUM – Returns the sum of the elements of an array.

• TRANSPOSE – Returns the transpose of an array.

• DOT PRODUCT – Returns the dot product of two one-dimensional array of the same size.

• MATMUL – Returns the product of two matrices. The dimensions must be consistent, i.e., (M,K) and
(K,N). One nice thing is that the intrinsic function MATMUL can be used for matrix-matrix (BLAS3)
as well as matrix-vector (BLAS2) operations. To compute a matrix-vector product you would provide the
consistent dimensions, e.g., (N,N) and (N, 1).
Be aware that if you want to find the product of two matrices you must use the Fortran intrinsic function
MATMUL. If you compute A*B in Fortran it will return the Hadamard (i.e. component wise) matrix product,
so don’t get confused.
There is the question of optimality of the MATMUL function. Keep in mind that this intrinsic function
assumes the matrices to be multiplied are dense. So, if you have a sparse matrix you want to exploit this
sparsity for speed and memory reduction purposes and use a different routine, probably from LAPACK, a
library that Fortran must properly link to use. The MATMUL function will be optimized by the compiler
with many different flags. In gfortran the compiler flags: -O, -O2, -O3, -Ofast (listed from least to most
aggressive) will all heavily optimize this function call. For modest matrix sizes (read as matrices smaller than
500 × 500) you won’t need more sophisticated optimization for any matrix products provided the matrices
dealt with are dense.
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arrayExampleA.f90
PROGRAM arrayExampleA

USE Constants
IMPLICIT NONE

! Can use the DIMENSION command or put an array’s size after the variable name
REAL(KIND=RP),DIMENSION(0:3) :: array1
REAL(KIND=RP),DIMENSION(4) :: array2 ! same as 1:4
REAL(KIND=RP),DIMENSION(-2:2) :: array3
REAL(KIND=RP) :: array4(-1:1,0:2) ! same as DIMENSION(-1:1,0:2)
REAL(KIND=RP) :: x,y
INTEGER :: j,k

x = 3.44_RP
y = 1.25_RP

WRITE(*,*)’size of array1’,SIZE(array1)
WRITE(*,*)’size of array2’,SIZE(array2)
WRITE(*,*)’size of array3’,SIZE(array3)
WRITE(*,*)’size of array4’,SIZE(array4)
WRITE(*,*)
WRITE(*,*)’shape of array1’,SHAPE(array1)
WRITE(*,*)’shape of array2’,SHAPE(array2)
WRITE(*,*)’shape of array3’,SHAPE(array3)
WRITE(*,*)’shape of array4’,SHAPE(array4)
WRITE(*,*)
WRITE(*,*)’lower index of array1’,LBOUND(array1)
WRITE(*,*)’lower index of array2’,LBOUND(array2)
WRITE(*,*)’lower index of array3’,LBOUND(array3)
WRITE(*,*)’lower indices of array4’,LBOUND(array4)
WRITE(*,*)
WRITE(*,*)’upper index of array1’,UBOUND(array1)
WRITE(*,*)’upper index of array2’,UBOUND(array2)
WRITE(*,*)’upper index of array3’,UBOUND(array3)
WRITE(*,*)’upper indices of array4’,UBOUND(array4)
WRITE(*,*)

! Syntax to assign specific values to an array
array1 = (/ -2.0_RP, 6.0_RP, pi, 1.1_RP /)
array2 = (/ x-y, x+y, SIN(x)-EXP(y), y**x /)

! Assign values in a loop
DO j = -2,2

array3(j) = x**j
END DO

! Can do array slicing using a colon, we assign each column of an array
array4(-1,:) = (/ 1.0_RP,-0.5_RP ,12.0_RP /)
array4(0,:) = (/ -3.0_RP, 0.5_RP , 1.11_RP /)
array4(1,:) = (/ 2.0_RP,-0.35_RP, 8.8_RP /)

! Can print the array without loops
WRITE(*,*)’array3 w/o loop’,array3
WRITE(*,*)’array4 w/o loop’,array4
WRITE(*,*)

! But it is always more readable if you print with loops and slice
WRITE(*,*)’array3 w/loop’
DO j = -2,2

WRITE(*,*)array3(j)

25



END DO! j
WRITE(*,*)’array4 w/loop’
DO j = -1,1

WRITE(*,*),array4(j,:)
END DO! j

WRITE(*,*)’max of array1’,MAXVAL(array1)
WRITE(*,*)’location of max in array2’,MAXLOC(array2)
WRITE(*,*)’min of array3’,MINVAL(array3)
WRITE(*,*)’location of min in array4’,MINLOC(array4)

END PROGRAM arrayExampleA

We compile and run this first array example and show the results. Note that the way you print arrays can turn
gibberish into a nice two-dimensional output.

arrayExampleA.f90 - Output
size of array1 4
size of array2 4
size of array3 5
size of array4 9

shape of array1 4
shape of array2 4
shape of array3 5
shape of array4 3 3

lower index of array1 0
lower index of array2 1
lower index of array3 -2
lower indices of array4 -1 0

upper index of array1 3
upper index of array2 4
upper index of array3 2
upper indices of array4 1 2

array3 w/o loop 8.45051379123850782E-002 0.29069767441860467 1.0000000000000000
3.4399999999999999 11.833599999999999

array4 w/o loop 1.0000000000000000 -3.0000000000000000 2.0000000000000000
-0.50000000000000000 0.50000000000000000 -0.34999999999999998 12.0000000000
00000 1.1100000000000001 8.8000000000000007

array3 w/loop
8.45051379123850782E-002
0.29069767441860467
1.0000000000000000
3.4399999999999999
11.833599999999999

array4 w/loop
1.0000000000000000 -0.50000000000000000 12.000000000000000

-3.0000000000000000 0.50000000000000000 1.1100000000000001
2.0000000000000000 -0.34999999999999998 8.8000000000000007

max of array1 6.0000000000000000
location of max in array2 2
min of array3 8.45051379123850782E-002
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location of min in array4 2 1

Next, we provide an example when we manipulate arrays which represent matrices. In the next example we also
write a quick subroutine to help print the arrays in the style we want. Let us write a SUBROUTINE to print an
array to the screen. Also, the next example explores how to manipulate values, specifically INTEGERs stored in a
two-dimensional array.

arrayExampleB.f90
PROGRAM arrayExampleB

IMPLICIT NONE
INTEGER,DIMENSION(2,2) :: A,B
INTEGER :: i,j

! Initialize the two arrays. Note throughout this example the arrays are operated on in-place
! So these values get overwritten during execution

A(1,:) = (/ 1 , 2 /)
A(2,:) = (/ 3 , 4 /)
B = 1 ! sets every element in the array B to 1

WRITE(*,*)’A=’
CALL PrintIntegerMatrix(A,2,2)
WRITE(*,*)’B=’
CALL PrintIntegerMatrix(B,2,2)

B(2,2) = B(2,2) + 3
WRITE(*,*)’Add 3 to B(2,2)’
CALL PrintIntegerMatrix(B,2,2)

A = 2*A
WRITE(*,*)’A=2*A’
CALL PrintIntegerMatrix(A,2,2)

A = A**2 - 1 ! These operations are done component-wise. This also applies for Fortran
! intrinsics like SIN, EXP, etc... as well

WRITE(*,*)’A=A**2-1’
CALL PrintIntegerMatrix(A,2,2)

A = A+B
WRITE(*,*)’A+B’
CALL PrintIntegerMatrix(A,2,2)

A = MATMUL(A,B)
WRITE(*,*)’A=AB’
CALL PrintIntegerMatrix(A,2,2)

A = TRANSPOSE(A)
WRITE(*,*)’A = AˆT’
CALL PrintIntegerMatrix(A,2,2)

WRITE(*,*)’Dot product of col 1 of A with col 2 of A’,DOT_PRODUCT(A(:,1),A(:,2))
WRITE(*,*)’Dot product of row 1 of A with row 2 of A’,DOT_PRODUCT(A(1,:),A(2,:))

END PROGRAM arrayExampleB
!
!/////////////////////////////////////////////////////////////////////////
!
SUBROUTINE PrintIntegerMatrix(mat,N,M)
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IMPLICIT NONE
INTEGER,INTENT(IN) :: N,M
INTEGER,INTENT(IN) :: mat(N,M)

! Local Variable
INTEGER :: i

DO i = 1,N
WRITE(*,*)mat(i,:)

END DO! i
WRITE(*,*)

!
RETURN

END SUBROUTINE PrintIntegerMatrix

Again, we provide the output of the second array example for instructive purposes.
arrayExampleB.f90 - Commands and Output

gfortran arrayExampleB.f90 -o arrayB
./arrayB
A=

1 2
3 4

B=
1 1
1 1

Add 3 to B(2,2)
1 1
1 4

A=A*2
2 4
6 8

A=A**2-1
3 15

35 63

A+B
4 16

36 67

A=AB
20 68

103 304

A = AˆT
20 103
68 304

Dot product of col 1 of A with col 2 of A 22732
Dot product of row 1 of A with row 2 of A 32672
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5.2 Example: Interpolation
Next, we apply Fortran and its array capabilities for an example common to numerical analysis. That is, the
creation of a polynomial interpolant of a function at a given set of interpolation nodes. Thus, this is a natural
setting for using arrays, e.g., to store set of interpolation nodes in a one-dimensional array. For this example we
also build upon the notion of PROGRAM structure and divide the process of creating a polynomial interpolant into
smaller pieces. However, we first give some brief background on what kind of polynomial interpolation technique
we will implement because there are several flavors available. Note this example implements a “classical” version of
polynomial interpolation. Therefore, the interpolation nodes are taken to be unique and we assume no knowledge
of the derivative of the function f(x) (i.e. no Hermite type interpolation).

Generally, we wish to interpolate a function f(x) given a set of interpolation points {xi}N
i=0 and the function

evaluated at those points {yi}N
i=0, where yi = f(xi). Omitting some detail, we know that Newton divided differences

provide an efficient way to create an interpolating polynomial. Consider the two sets of points (x0, y0) and (x1, y1).
The polynomial interpolant of order 1 is given by the straight line:

p1(x) = y0 + y1 − y0

x1 − x0︸ ︷︷ ︸
y[x0,x1]

(x− x0),

where we introduce the standard notation for the first Newton divided difference coefficient y[x0, x1]. Notice that
we have consistency at the endpoints, p1(x0) = y0 and p1(x1) = y1. A series of polynomials can then be constructed
in a sequence based on their order, i.e., depending on the number of interpolation points available:

p0(x) = y0,

p1(x) = y0 + y[x0, x1](x− x0),
p2(x) = y0 + y[x0, x1](x− x0) + y[x0, x1, x2](x− x0)(x− x1),

...
Then the interpolating polynomial, PN , created with Newton divided differences is given by the sum of the preceding
sequence, i.e.,

PN (x) =
N∑

i=0
ci

i−1∏
j=0

(x− xj),

where the coefficients ci, i = 0, . . . , N
Next, we detail the procedures necessary to have a proper interpolation routine based on Newton divided

differences. We slightly optimize how the coefficients and interpolating polynomial is constructed in the given
subroutines. We then collect all the interpolation procedures into a module that we use with the main program.

Algorithm 4: Newton Coefficients: Compute interpolation coefficients from Newton divided differences.

Procedure Newton Coefficients
Input: {xi}N

i=0, {yi}N
i=0, N

c0 ← y0
for k = 1 to N do

d← xk − xk−1
u← ck−1
for j = k − 2 to 0 do

u← u(xk − xj) + cj

d← d(xk − xj)

ck ← (yk − u)/d

Output: {ci}N
i=0

End Procedure Newton Coefficients
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Algorithm 5: Newton Interpolating Polynomial: Evaluate interpolant at a point

Procedure Newton Interpolating Polynomial
Input: x, {xi}N

i=0, {ci}N
i=0, N

P (x)← 0
for i = 0 to N do

p← 1
for j = 0 to i− 1 do

p← p(x− xj)

P (x)← P (x) + cip

Output: P (x)

End Procedure Newton Interpolating Polynomial

Algorithm 6: Interpolated Values: Interpolate to a set of nodes stored in xnew.

Procedure Interpolated Values
Uses: Algorithm 5
Input: {ci}N

i=0, {xi}N
i=0, {xnew

i }N
i=0, N

for k = 0 to N do
ynew

k ← Newton Interpolating Polynomial(xnew
k , {xi}N

i=0, {ci}N
i=0, N)

Output: {ynew
i }N

i=0

End Procedure Interpolated Values

We amalgamate the interpolation and convenience procedures for printing results to a file, for plotting purposes,
into a MODULE. We then use this MODULE in a driving program to test the fidelity of the Newton divided
difference interpolating polynomial. Note we only check the polynomial against the function f(x) in the “eyeball”
norm just as a sanity check. To be complete we should also perform an in-depth analysis of the approximation
errors and convergence on different sets of interpolation nodes.

interpolationRoutines.f90
MODULE InterpolationRoutines

USE Constants
IMPLICIT NONE

! No variable declarations
CONTAINS

SUBROUTINE Interpolate(C,X,Xnew,Ynew,N)
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(0:N) ,INTENT(IN) :: C,X
REAL(KIND=RP),DIMENSION(0:2*N),INTENT(OUT) :: Xnew,Ynew
REAL(KIND=RP),EXTERNAL :: Poly_Interpolant

! Local variables
INTEGER :: i

DO i = 0,2*N
Xnew(i) = i*(2.0_RP*pi)/N
Poly_Interpolant(Xnew(i),X,C,N,Ynew(i))
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END DO! i
!

RETURN
END SUBROUTINE Interpolate

!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE NewtonCoeff(X,Y,C,N)
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(0:N),INTENT(IN) :: X,Y
REAL(KIND=RP),DIMENSION(0:N),INTENT(OUT) :: C

! Local Variables
REAL(KIND=RP) :: d,u
INTEGER :: i,j

C(0) = Y(0)
DO j = 1,N

d = X(j) - X(j-1)
u = C(j-1)
DO i = j-2,0,-1

u = u*(X(j)-X(i))+C(i)
d = d*(X(j)-X(i))

END DO! i
C(j) = (Y(j)-u)/d

END DO! j
!

RETURN
END SUBROUTINE NewtonCoeff

!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE Poly_Interpolant(x,nodes,coeff,N,y)
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(0:N),INTENT(IN) :: nodes,coeff
REAL(KIND=RP) ,INTENT(IN) :: x
REAL(KIND=RP) ,INTENT(OUT) :: y

! Local variables
INTEGER :: i,j
REAL(KIND=RP) :: temp

y = 0.0_RP
DO i = 0,N

temp = 1.0_RP
DO j = 0,i-1

temp = temp*(x-nodes(j))
END DO! j
y = y + coeff(i)*temp

END DO! i
!

RUTURN
END SUBROUTINE Poly_Interpolant

!
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!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE ReadInArrays(X,Y,N)
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(0:N),INTENT(OUT) :: X,Y

! Local variables
INTEGER :: i

!
OPEN(12,FILE="poly.dat")
DO i = 0,N

READ(12,*)X(i),Y(i)
END DO! i

!
RETURN

END SUBROUTINE ReadInArrays
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE WriteData(X,Y,N)
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(0:N),INTENT(IN) :: X,Y

! Local Variables
INTEGER :: i

!
OPEN(12,FILE=’output.dat’)
DO i = 0,N

WRITE(12,*)X(i),Y(i)
END DO! i
CLOSE(12)

!
RETURN

END SUBROUTINE WriteData
END MODULE InterpolationRoutines

With the interpolation module in place, we have the tools necessary to write and compile a driver program.
interpolationDriver.f90

PROGRAM interpolationDriver
USE InterpolationRoutines
IMPLICIT NONE
INTEGER :: N = 12
REAL(KIND=RP),DIMENSION(0:N) :: X,Y,c
REAL(KIND=RP),DIMENSION(0:2*N) :: newX,newY
INTEGER :: i

! This ensures that the function data is available in the file poly.dat for the later routines
OPEN(13,FILE=’poly.dat’)
DO i = 0,N

X(i) = i*(2.0_RP*pi)/N
Y(i) = COS(X(i))
WRITE(13,*)X(i),Y(i)

END DO! i
CLOSE(13)

!
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CALL ReadInArrays(X,Y,N)
CALL NewtonCoeff(X,Y,c,N)
CALL Interpolate(c,X,newX,newY,N)
CALL WriteData(newX,newY,N)

!
END PROGRAM interpolationDriver

We compile and run the interpolation program and plot the result of the Newton divided difference polynomial of
order 12. The result passes the eyeball norm, because the interpolation looks correct and approximates the function
f(x) = cos(x) on the interval [0, 2π]. As previously mentioned, to fully verify the code and its interpolation functions
properly, we need to compare the numerical errors, using multiple functions, to theoretical predictions and ensure
consistency.
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Figure 1: Newton interpolating polynomial run with N = 12.
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Chapter 6: Object Oriented Programming
Object Oriented Programming (OOP) is a programming method that represents concepts as “objects” that contain
data and procedures which operate on the data. Objects offer an effective and structured way to organize computer
programs. We note that Fortran95 is not truly object oriented, but can be “tricked” into behaving like it is. Object
Oriented Fortran is available in later Fortran distributions (like Fortran2003); however, we do not discuss it in
these notes.

In Fortran, modules are one important component of OOP. In this chapter we introduce the other component of
OOP as well as expanding the power with which we use modules. Also, unlike with C++, Fortran programmers have
to handle their own constructors and destructors for objects. Generally, this means one needs to be careful that
any memory allocation (in a constructor) has a matching memory deallocation (in a destructor). This is especially
important when using dynamic arrays, a topic discussed in Chap. 7.2.

6.1 Derived Types
We have seen the available intrinsic data types, like INTEGER, but is this all that is available to us? It turns out
no! We can create our own data types. Because these user defined types contain instances of the intrinsic data
types they are called derived types. We’ll give a few examples of derived types that could come up in different
computing projects. We also show how to access elements of a derived type using a % command.

DerivedEx1.f90
PROGRAM DerivedEx1

USE Constants
TYPE Coordinate3D

REAL(KIND=RP),DIMENSION(3) :: x ! stores (x,y,z)
END TYPE Coordinate3D
TYPE(Coordinate3D) :: point

!
point%x(1) = 6.0_RP
point%x(2) = 0.0_RP
point%x(3) = -1.0_RP

!
WRITE(*,*)point

!
END PROGRAM DerivedEx1

DerivedEx2.f90
PROGRAM DerivedEx2

USE Constants
IMPLICIT NONE
TYPE Coordinate3D

REAL(KIND=RP),DIMENSION(3) :: x ! stores (x,y,z)
END TYPE Coordinate3D

! One derived type can contain another derived type
TYPE Pixel

TYPE(Coordinate3D) :: position
INTEGER :: color(3) ! stores three integer RGB values

END TYPE Pixel
!

TYPE(Pixel) :: pixel1,pixel2
! set the RGB values for pixel 1

pixel1%color(1) = 255
pixel1%color(2) = 0
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pixel1%color(3) = 255
! set the position of the pixel. Note the nesting of the % command when we have a derived
! type that contains another derived type

pixel1%position%x(1) = 2.0_RP
pixel1%position%x(2) = 200.0_RP
pixel1%position%x(3) = 50.0_RP

!
WRITE(*,*)pixel1

! A more compact way to set values in the pixel derived type uses array type notation
pixel2 = Pixel(Coordinate3D( (/ 15.0_RP/6.0_RP, 125.0_RP, 220.0_RP /) ),(/ 123,68,23 /))

!
WRITE(*,*)pixel2

!
END PROGRAM DerivedEx2

6.2 Example: Matrices
Now let’s combine the concepts of derived types and modules to create a matrix object as well as functions and
subroutines that operate on said matrix object. In the module, which defines the matrix TYPE, we use a standard
notational convention form OOP and refer to the object that is operated on as this.

MatrixModule.f90
MODULE MatrixModule

USE Constants
IMPLICIT NONE
TYPE Matrix

REAL(KIND=RP) :: element
END TYPE Matrix

!
CONTAINS
!

REAL(KIND=RP) FUNCTION OneNorm(this)
TYPE(Matrix),INTENT(IN) :: this(:,:) ! colons as the dimension mean arbitrary size

! Local variables
REAL(KIND=RP) :: colSum
INTEGER :: j,m,n

!
m = SIZE(this(:,1))
n = SIZE(this(1,:))
OneNorm = 0.0_RP
DO j = 1,n

colSum = SUM(ABS(this%(:,j)%element))
OneNorm = MAX(OneNorm,colSum)

END DO! j
!

END FUNCTION OneNorm
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE matrix_real_scalar(this,real_scalar)
REAL(KIND=RP),INTENT(IN) :: real_scalar
TYPE(Matrix) ,INTENT(OUT) :: this

!
this%element = real_scalar

!
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RETURN
END SUBROUTINE matrix_real_scalar

!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE matrix_real_matrix(this,real_matrix)
REAL(KIND=RP),INTENT(IN) :: real_matrix
TYPE(Matrix) ,INTENT(OUT) :: this

!
this(:,:)%element = real_matrix(:,:)

!
RETURN

END SUBROUTINE matrix_real_scalar
!
END MODULE MatrixModule

MatrixMain.f90
PROGRAM MatrixMain

USE MatrixModule
IMPLICIT NONE
INTEGER,PARAMETER :: N = 2
TYPE(Matrix) :: mat1(N,N)
INTEGER :: i,j
REAL(KIND=RP) :: array(N,N)

!
DO i = 1,N

DO j = 1,N
array(i,j) = 2.0_RP**i + 3.0_RP**j

END DO! j
END DO! i
CALL matrix_real_matrix(mat1,array)
WRITE(*,*)OneNorm(mat1)
CALL matrix_real_scalar(mat1(1,2),2.3_RP)

!
END PROGRAM MatrixMain

These subroutines and function all work, and will yield correct values. However, it can become unwieldy to keep
track of all the procedures in a module. We can simplify our lives if we use an INTERFACE.

6.3 Interfaces
We know the two major components of Object Oriented Programming in Fortran: Derived types and Modules that
we use to organize data, functions, and subroutines. Now, we learn about the INTERFACE construct that will
make modules easier to use.

MatrixModule2.f90
MODULE MatrixModule

USE Constants
IMPLICIT NONE
TYPE Matrix

REAL(KIND=RP) :: element
END TYPE Matrix

!
INTERFACE ASSIGNMENT(=)

MODULE PROCEDURE matrix_real_scalar,matrix_real_matrix
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END INTERFACE
!
CONTAINS
!

REAL(KIND=RP) FUNCTION OneNorm(this)
TYPE(Matrix),INTENT(IN) :: this(:,:) ! colons as the dimension mean arbitrary size

! Local variables
REAL(KIND=RP) :: colSum
INTEGER :: j,m,n

!
m = SIZE(this(:,1))
n = SIZE(this(1,:))
OneNorm = 0.0_RP
DO j = 1,n

colSum = SUM(ABS(this%(:,j)%element))
OneNorm = MAX(OneNorm,colSum)

END DO! j
END FUNCTION OneNorm

!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE matrix_real_scalar(this,real_scalar)
REAL(KIND=RP),INTENT(IN) :: real_scalar
TYPE(Matrix) ,INTENT(OUT) :: this

!
this%element = real_scalar

!
RETURN

END SUBROUTINE matrix_real_scalar
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE matrix_real_matrix(this,real_matrix)
REAL(KIND=RP),INTENT(IN) :: real_matrix
TYPE(Matrix) ,INTENT(OUT) :: this

!
this(:,:)%element = real_matrix(:,:)

!
RETURN

END SUBROUTINE matrix_real_scalar
END MODULE MatrixModule

MatrixMain2.f90
PROGRAM MatrixMain2

USE MatrixModule
IMPLICIT NONE
INTEGER,PARAMETER :: N = 2
TYPE(Matrix) :: mat1(N,N)
INTEGER :: i,j
REAL(KIND=RP) :: array(N,N)

!
DO i = 1,N

DO j = 1,N
array(i,j) = 2.0_RP**i + 3.0_RP**j
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END DO! j
END DO! i

! CALL matrix_real_matrix(mat1,array)
mat1 = array
WRITE(*,*)OneNorm(mat1)

! CALL matrix_real_scalar(mat1(1,2),2.3_RP)
mat1(1,1) = 2.3_RP

!
END PROGRAM MatrixMain2

It doesn’t look like we have done a lot, but the INTERFACE construct associated two subroutines in the module
MatrixModule2 with the assignment = operator. In effect we overloaded the = operator to use two different
subroutines. So when we invoke the = operator the compiler will check to see if either of those subroutines work
with the data types involved.

Further, it is possible to use an INTERFACE to simplify calls to Fortran’s intrinsic functions. For example,
let’s change a call to MATMUL into the * operator. We’ll add this capability to the previous module.

MatrixModule3.f90
MODULE MatrixModule

USE Constants
IMPLICIT NONE

!
TYPE Matrix

REAL(KIND=RP) :: element
END TYPE Matrix

!
INTERFACE ASSIGNMENT(=)

MODULE PROCEDURE matrix_real_scalar,matrix_real_matrix
END INTERFACE

!
INTERFACE OPERATOR(*)

MODULE PROCEDURE matrix_matrix_multiply
END INTERFACE

!
CONTAINS
!

REAL(KIND=RP) FUNCTION OneNorm(this)
TYPE(Matrix),INTENT(IN) :: this(:,:) ! means arbitrary size

! Local variables
REAL(KIND=RP) :: colSum
INTEGER :: j,m,n

!
m = SIZE(this(:,1))
n = SIZE(this(1,:))
OneNorm = 0.0_RP
DO j = 1,n

colSum = SUM(ABS(this%(:,j)%element))
OneNorm = MAX(OneNorm,colSum)

END DO! j
!

END FUNCTION OneNorm
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE matrix_real_scalar(this,real_scalar)
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REAL(KIND=RP),INTENT(IN) :: real_scalar
TYPE(Matrix) ,INTENT(OUT) :: this

!
this%element = real_scalar

!
RETURN

END SUBROUTINE matrix_real_scalar
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE matrix_real_matrix(this,real_matrix)
REAL(KIND=RP),INTENT(IN) :: real_matrix
TYPE(Matrix) ,INTENT(OUT) :: this

!
this(:,:)%element = real_matrix(:,:)

!
RETURN

END SUBROUTINE matrix_real_scalar
!
!/////////////////////////////////////////////////////////////////////////
!

REAL(KIND=RP) FUNCTION matrix_matrix_multiply(this1,this2) RESULT(this_prod)
TYPE(Matrix),INTENT(IN) :: this1(:,:),this2(:,:)
TYPE(Matrix) :: mat_prod(SIZE(this1,1),SIZE(this2,2))!pull correct dimensions

!
this_prod(:,:)%element = MATMUL(this1(:,:)%element,this2(:,:)%element)

!
END FUNCTION matrix_matrix_multiply

!
END MODULE MatrixModule

In the FUNCTION written in the above module we see that there is not a variable with the same name as the
function. Instead, we have a variable with the RESULT denomination. This lets the compiler know that the
RESULT variable has the type of the FUNCTION (in this case REAL(KIND=RP) with the name this prod. This
feature is useful if the name of the FUNCTION is long or not descriptive of the information it returns.

MatrixMain3.f90
PROGRAM MatrixMain3

USE MatrixModule
IMPLICIT NONE
INTEGER,PARAMETER :: N = 3
TYPE(Matrix) :: mat1(N,N)
INTEGER :: i,j
REAL(KIND=RP) :: array(N,N)

!
DO i = 1,N

DO j = 1,N
array(i,j) = 2.0_RP**i + 3.0_RP**j

END DO! j
END DO! i

! CALL matrix_real_matrix(mat1,array)
mat1 = array
PRINT*
WRITE(*,*)’The 1-norm of the matrix A is ’OneNorm(mat1)
PRINT*
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! CALL matrix_real_scalar(mat1(1,2),2.3_RP)
mat1(1,1) = 2.3_RP
mat1 = mat1*mat1
PRINT*,’A*A = ’
DO i = 1,N

PRINT*,mat1(i,:)
END DO! i
PRINT*

!
END PROGRAM MatrixMain3

We provide the output of the final matrix object for instructive purposes.
arrayExampleB.f90 - Commands and Output

gfortran MatrixModule3.f90 MatrixMain3.f90 -o MatrixMultiply
./MatrixMultiply

The 1-norm of the matrix A is 95.000000000000000

A*A =
421.00000000000000 691.00000000000000 1501.0000000000000
467.00000000000000 773.00000000000000 1691.0000000000000
559.00000000000000 937.00000000000000 2071.0000000000000

If desired, you could also add subroutines to this module, and possibly INTERFACE functionality. For example,
one could add an inversion call A/B, a LU decomposition, the Thomas Algorithm, printing arrays, or other matrix
operations to the Fortran code. This would give your Fortran implementation a more MATLAB feel.
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Chapter 7: Advanced Topics
In this chapter we cover selected advanced topics in Fortran programming. All the topics come in handy to add
extra functionality to programs, but the feature that you will use most often is dynamic arrays, i.e., an array the
size of which can be redefined at execution time.

7.1 Overloading Operators
We’ve seen a few examples of overloading intrinsic assignment operators, like the = operator. However, we can
also define our own operators using interfaces. For example, we can create dot and cross product operators for
vector calculations:

Dot and Cross Product Operators
MODULE DotCrossProduct

USE Constants
IMPLICIT NONE

! Operator syntax: u.DOT.v
INTERFACE OPERATOR(.DOT.)

MODULE PROCEDURE dotproduct
END INTERFACE

! Operator syntax: u.CROSS.v
INTERFACE OPERATOR(.CROSS.)

MODULE PROCEDURE crossproduct
END INTERFACE

!!!
CONTAINS
!!!

REAL(KIND=RP) FUNCTION dotproduct(vec1,vec2) RESULT(dot)
REAL(KIND=RP),INTENT(IN) :: vec1(:),vec2(:)
IF (SIZE(vec1).EQ.SIZE(vec2)) THEN

dot = DOT_PRODUCT(vec1,vec2)
ELSE

dot = 0.0_RP
PRINT*,’ERROR: Vector size mismatch’

END IF
!

END FUNCTION dotproduct
!

REAL(KIND=RP) FUNCTION crossproduct(vec1,vec2)
REAL(KIND=RP),INTENT(IN) :: vec1(3),vec2(3)
REAL(KIND=RP) :: cross(3)
IF (SIZE(vec1).EQ.SIZE(vec2)) THEN

cross(1) = vec1(2)*vec2(3) - vec1(3)*vec2(2)
cross(2) = vec1(3)*vec2(1) - vec1(1)*vec2(3)
cross(3) = vec1(1)*vec2(2) - vec1(2)*vec2(1)

ELSE
cross = 0.0_RP
PRINT*,’ERROR: Vector size mismatch’

END IF
!

END FUCNTION crossproduct
END MODULE DotCrossProduct

41



7.2 Dynamic Arrays
When we dealt with arrays in Chap. 5 we made the implicit assumption that we already knew how large we wanted
to make the array. We can remove such an assumption if we add the ALLOCATABLE attribute to a variable
declaration. This attribute will tell the compiler to reserve a chunk of memory for possible use during execution.
It also gives us the freedom to resize arrays during a PROGRAM without recompiling.

For example, if we want a three dimensional ALLOCATABLE array we use a colon, :, as a placeholder for the
dimension size.

REAL(KIND=RP),ALLOCATABLE,DIMENSION(:,:,:) :: array1

To make the reserved memory available we use the ALLOCATE command. Always remember that if a PROGRAM,
FUNCTION, or SUBROUTINE contains an ALLOCATE command it should have a corresponding DEALLOCATE
command to release the memory. This will help prevent memory leaks, which occur when a program mismanages
memory. Memory leaks can slow down performance and can even exhaust available system memory (which leads
to segmentation faults). Fortran does offer some built-in error checking when allocating memory:

ALLOCATE(var_name(lowerBound:upperBound),STAT=ierr)

where the STAT option returns an INTEGER type. If ierr 6= 0, then there was an error allocating the memory
for var name.

It is important to note that there are compiler options that can assist you when debugging dynamic arrays
(especially when tracking down segmentation faults). Examples of compiler flags to help locate memory mis-
management for the gfortran compiler are -fbounds-check, -g, and -fbacktrace. With this flag activated the
program will alert the user to any problems with arrays. In particular, the program will throw an error if it is
ever detected that an operation reaches outside an allocated array’s bound. As useful as this utility is, be sure to
turn off these flags once you are confident the code is debugged because extra options like checking dynamic array
bounds can hurt your code’s performance. So, to ensure the program runs as quickly as possible make sure all the
debug compiler options are turned off, and any optimizers you want activated turned on.

We also show a quick example of reallocating memory during a program’s execution
AllocateExample.f90

PROGRAM AllocateExample
IMPLICIT NONE
INTEGER,ALLOCATABLE,DIMENSION(:) :: array1
INTEGER,ALLOCATABLE,DIMENSION(:,:) :: array2

!
ALLOCATE(array1(-2:8),array2(-1:2,0:10))
PRINT*,LBOUND(array1),UBOUND(array1)
PRINT*,SHAPE(array2)
DEALLOCATE(array1,array2)

!
ALLOCATE(array1(0:100),array2(1:5,-5:5))
PRINT*,LBOUND(array1),UBOUND(array1)
PRINT*,SHAPE(array2)
DEALLOCATE(array1,array2)

!
END PROGRAM AllocateExample

7.3 Optional Arguments
When we write a FUNCTION or SUBROUTINE sometimes an argument may not need to be present at all times.
For example, in a function that prints a matrix we can write to a file, but default to the terminal if no file name is
provided. In this way, we can make the file name an OPTIONAL argument. The procedure can then check if the
argument is PRESENT (returns a LOGICAL) and operate accordingly.
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OptionalPrint.f90
SUBROUTINE PrintMatrix(mat,fileName,N)

USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(N,N),INTENT(IN) :: mat
CHARACTER(LEN=*),OPTIONAL ,INTENT(IN) :: fileName

! Local Variables
INTEGER :: i,fileUnit

! Open a given file, if no file present print to screen
IF (PRESENT(fileName)) THEN

OPEN(UNIT=fileUnit,FILE=fileName)
ELSE

fileUnit = 6 ! recall 6 is the terminal screen
END IF

!
DO i = 1,N

WRITE(fileUint,*)mat(i,:)
END DO! i

! Close the file if it was opened
IF (PRESENT(fileName)) THEN

CLOSE(fileUnit)
END IF

!
RETURN

END SUBROUTINE PrintMatrix

7.4 Advanced Input/Output Options
We know how to read in or write unformatted data to the terminal or to a file, but there are some useful I/O options
we glossed over. Next we’ll explore some of the advanced options available to us when inputting and outputting
information.

7.4.1 Non-Advancing I/O

First is the ADVANCE option in READ or WRITE statements. Effectively, this will tell the READ/WRITE
statement whether or not to advance to the next line. By default, ADVANCE is set to ’YES’. For example,

Advance NO
READ(fileUnit,ADVANCE=’NO’)var1,var2,var3,var4

will read in four variables from the file pointed to by fileUnit where all variables are on the same line. However,
if we read in using

Advance YES
READ(fileUnit,*)var1,var2,var3,var4

reads in four variables from the file pointed to by fileUnit where each variables is on its own line, i.e., separated
by a carriage return.

7.4.2 Formatted File I/O

Sometimes unformatted file reading and writing is insufficient. For example, Fortran can create and read binary
files, which require special arguments. To format data for reading/writing Fortran uses a notation like ’A4’, which
means a character of length 4. Or in general, a variable type and the length of the data to be written. The most
common variable outputs are
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• A – characters/strings

• I – integer

• F – real number, decimal form

• E – real number, exponential form

• ES – real number, scientific notation

• EN – real number, engineering notation

For real number outputs we specify the total width of the number as well as the number of digits to appear after
a decimal points, e.g., F10.6 is a real number with 10 digits, 6 of which appear after the decimal. Further, we can
include multiple instances of real number formatting if we wish to output multiple numbers, i.e. 5F7.5 expects to
output 5 real numbers, each with 7 digits, 5 of which appear after the decimal

We can combine several different formatting parameters by replacing the * option with ’(parameters)’ as we
do in the next example

FormatPrint.f90
SUBROUTINE PrintMatrix_Formatted(mat,fileName,N)

USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(N,N),INTENT(IN) :: mat
CHARACTER(LEN=*),OPTIONAL ,INTENT(IN) :: fileName

! Local Variables
INTEGER :: i,j,fUnit

! Open a given file, if no file present print to screen
IF (PRESENT(fileName)) THEN

OPEN(UNIT=fUnit,FILE=fileName)
ELSE

fUnit = 6 ! 6 is the terminal screen
END IF

!
DO i = 1,N

DO j = 1,N
WRITE(fUint,’(A2,I3,A2,I3,A2,F10.6,A1)’,ADVANCE=’NO’)’A[’,i,’][’,j,’]=’mat(i,j),’ ’

END DO! j
WRITE(fUint,’(A2,I3,A2,I3,A2,F10.6)’)’A[’,i,’][’,j,’]=’mat(i,j)

END DO! i
! Close the file if it was opened

IF (PRESENT(fileName)) THEN
CLOSE(fUnit)

END IF
!

RETURN
END SUBROUTINE PrintMatrix_Formatted

7.5 Recursive Procedures in Fortran
Many mathematical formulae lend themselves to a recursive formulation, like the Fast Fourier Transform (FFT).
But, as we mentioned in Chap. 4, normally a FUNCTION or SUBROUTINE cannot reference itself, directly or
indirectly. However, if we invoke that the procedure is RECURSIVE self-reference is possible.
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7.5.1 Recursive Functions

We start with a canonical example of a recursive function to compute the factorial, n!, for some integer n. This
example also introduces a SELECT CASE, which is a common alternative to IF statements.

Recursive Function
RECURSIVE FUNCTION factorial(n) RESULT(factorial_n)

IMPLICIT NONE
INTEGER,INTENT(IN) :: n

! Determine if recursion is required
SELECT CASE(n)
CASE (0)

! Recursion reached the end
factorial_n = 1.0_RP

CASE (1:) ! any integer above 0
! Recursion call(s) required

factorial_n = n*factorial(n-1)
CASE DEFAULT

! If n is negative, return error
PRINT*,’ERROR: n is negative’
factorial_n = 0.0_RP

END SELECT
END FUNCTION factorial

7.5.2 Recursive Subroutines

We can also create recursive subroutines. Another example arises in the bisection method, where one recursively
halves an interval based on the function f(x) to locate the root of a function. We also enable the termination of
the subroutine once we reach a certain number of iterations (interval halvings).

halveInterval.f90
RECURSIVE SUBROUTINE halveInterval(f,xL,xR,tol,iter_count,zero,delta,err)

IMPLICIT NONE
REAL(KIND=RP),INTENT(IN) :: tol
REAL(KIND=RP),INTENT(INOUT) :: xL,xR
INTEGER ,INTENT(INOUT) :: iter_count
REAL(KIND=RP),INTENT(OUT) :: zero,delta
INTEGER ,INTENT(OUT) :: err
REAL(KIND=RP),EXTERNAL :: f

! Local Variables
REAL(KIND=RP) :: xM

!
delta = 0.5_RP*(xR-xL)

! Check to see if you’ve reached the tolerance for the root
IF (delta.LT.tol) THEN

! Yes! - Return result
err = 0
zero = xL + delta

ELSE
! No root yet - check iterations and halve again

iter_count = iter_count - 1
IF (iter_count.LT.0) THEN

! Max iterations w/o solution - return error
err = -2
zero = xL + delta

ELSE
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! Keep iterating
xM = xL + delta
IF (f(xL)*f(xm).LT.0.0_RP) THEN

CALL halveInterval(f,xL,xM,tol,iter_count,zero,delta,err)
ELSE

CALL halveInterval(f,xM,xR,tol,iter_count,zero,delta,err)
END IF

END IF
END IF

!
RETURN

END SUBROUTINE halveInterval

7.6 Using Specific Parts of a Module
We have already introduced how a PROGRAM or MODULE can use another MODULE to make variables, data
structures, and routines available for use. However, it is often the case that a PROGRAM or SUBROUTINE does
not use everything included in a module but only some of the data or a few routines. Next we demonstrate how
to specify particular pieces of a given MODULE to be used elsewhere. There are several advantages to specifying
what part of a MODULE is used where:

1. There is a built in list for each FUNCTION, SUBROUTINE, and PROGRAM of what precisely each routine
uses and in which MODULEs the variables and/or routines lie. This makes it very clear to the programmer
how the program is to be linked.

2. It makes debugging easier since you know precisely which routines could be causing the code to not run
properly.

3. The code will compile faster.

4. The code will run faster (particularly with optimization enabled) because the compiler knows which routines
are passed and can more effectively manage memory.

As a concrete example lets say we have a MODULE that contains several different routines to approximate an
integral called quadratureRules.f90 (this could include midpoint rule, Simpson’s rule, Gauss quadrature, etc.)
Then we can specify in the driver for the integral approximation which method we use.

useOnlyExample.f90
PROGRAM Quadrature

USE Constants ,ONLY: RP
USE QuadratureRules,ONLY: SimpsonsRule
USE Functions ,ONLY: f ! = xˆ3 + cos(x)
IMPLICIT NONE
INTEGER ,PARAMETER :: N = 100
REAL(KIND=RP),PARAMETER :: a = -2.0_RP, b = 3.0_RP
REAL(KIND=RP) :: Integral

!
Integral = SimpsonsRule(a,b,N,f)
WRITE(*,*)’Approximation for f(x) integral: ’,Integral
WRITE(*,*)

!
END PROGRAM Quadrature

7.7 Pure Procedures
We have seen that a FUNCTION or a SUBROUTINE can modify their input arguments. We have some control
over preventing this or dictating if it is allowed by prescribing the INTENT of an input variable. However, Fortran

46



can place even stricter guidelines on routines to prevent changing data values outside of a specific routine. This is
done by telling a Fortran a procedure is PURE, which means that there is no chance that the procedure will have
any side effect on data outside the procedure. Either a FUNCTION or a SUBROUTINE can be defined as PURE,
but the keyword must be used in the procedure declaration.

Due to their stringent nature on controlling data, there are some rules attached to making a procedure PURE.
First, there can be no external I/O operations within a pure procedure. Also, a pure procedure cannot contain
the STOP statement. If a PURE procedure is a FUNCTION, then each input argument must be declared as
INTENT(IN). Further, if the PURE procedure is a SUBROUTINE each input argument must declare some form
of the INTENT attribute (either IN, OUT, or INOUT).

Pure Function Example
PURE FUNCTION cube(x)

USE Constants,ONLY: RP
IMPLICIT NONE
REAL(KIND=RP),INTENT(IN) :: x
REAL(KIND=RP) :: cube
cube = x*x*x ! slower syntax would be x**3

END FUNCTION

PROGRAM pureFunctionExample
USE Constant,ONLY: RP
IMPLICIT NONE
REAL(KIND=RP) :: a,b,cube
a = 2.0_RP
b = cube(a)

! After invoking the pure function we are certain nothing has changed besides assigning the
! output value to b. The value of a is guaranteed unchanged
END PROGRAM pureFunctionExample

Here, because the FUNCTION and the PROGRAM are contained within the same file, we do not have to assign
the EXTERNAL statement to the cube function.

We also provide an example of a PURE SUBROUTINE. In this case it a procedure that converts a vector of
conserved variables for the compressible Euler equations

Cons = (ρ , ρu , ρv , ρw , E) ,

where E is the total energy, into a vector of primitive variables (assuming an ideal gas)

Prim = (ρ , u , v , w , p) .

In practice, this is a useful intermediate procedure when we go to compute the fluxes for the Euler equations. In
the x direction the flux has the form

xFlux =
(
ρu , ρu2 + p , ρuv , ρuw , u(E + p)

)
where we see the necessity of knowing the pressure p.

Pure Subroutine Example
PURE SUBROUTINE ConsToPrim(prim,cons)
! Transformation from conservative variables to primitive variables

USE Constants,ONLY: RP,gamma ! gamma is the adiabatic coefficient
IMPLICIT NONE
REAL(KIND=RP),INTENT(IN) :: cons(5)
REAL(KIND=RP),INTENT(OUT) :: prim(5)

! Local variables
REAL(KIND=RP) :: sRho

!
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sRho=1.0_RP/cons(1)
! rho

prim(1)=cons(1)
! vels = momenta/rho

prim(2:4)=cons(2:4)*sRho
! pressure

prim(5)=(gamma-1.0_RP)*(cons(5)-0.5_RP*SUM(cons(2:4)*prim(2:4)))
!

RETURN
END SUBROUTINE ConsToPrim

7.8 Associate Construct
This is, by far, the newest feature of Fortran discussed in these notes. The ASSOCIATE construct was introduced
with the release of Fortran2003. It offers a way to assign simple abbreviated expressions to more complicated
statements. Further, it does this “masking” of an expression to an intermediate variable without the need to
declare a new variable (provided it is contained inside an ASSOCIATE block). This can be used to make the code
more readable, which is particularly important when collaborating on a large coding project. It also offers some
flexibility to “rename” variables in a FUNCTION/SUBROUTINE for a code snippet without the need to declare a
bunch of local variables.

associateExample.f90
PROGRAM associateExample

USE Constants, ONLY: RP
IMPLICIT NONE
REAL(KIND=RP) :: x,y,a,temp

!
x = 0.5_RP
y = 0.85_RP
a = 1.2_RP
temp = 6.28_RP

! begin the associate block where we mask to new variable names
PRINT*
ASSOCIATE(radius => SQRT(x*x+y*y), rho => temp)

PRINT*,radius+a,radius-a,rho
rho = rho + 9.43_RP

END ASSOCIATE
PRINT*
PRINT*,temp

!
END PROGRAM associateExample

Note that after the end of the ASSOCIATE construct, any changes made within the construct to the value of the
associating entity (in this case rho) that associates with temp is reflected. We verify this behavior with the following
output.

associateExample.f90 - Commands and Output
gfortran associateExample.f90 -o Associate
./Associate

2.1861541461658009 -0.2138458538341990 6.2800000000000000

15.710000000000000
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Chapter 8: Some Debugging Practices
At this point we are familiar with Fortran, many of its features, and know how to create and organize a coding
project. However, one aspect of computer programming for scientific computing has not been discussed and that is
debugging. We have the knowledge of how to write a FUNCTION, SUBROUTINE, or PROGRAM. Also, getting
the source code to compile is aided by the compiler because it will throw errors and/or warnings to the terminal to
guide you (usually even stating line numbers in particular routines where it detects a problem). But, having source
code compile and produce an executable is only a small part of the work for scientific computing. The immediate
question arises: Is the data produced by the program correct? Does it solve the problem we want in the expected
way? Even further back from examining the output of the program. Does the program actually run? Does the
code terminate due a segmentation fault? Does it produce NaN? Does it run indefinitely for some reason?

Once the code is compiling a new aspect of computer programming takes over and we must debug the code.
Bugs are very common when writing numerical algorithms and they occur for programmers of any skill or experience
level. It is only the nature of the bugs that change as you gain more experience coding. In this Chapter we will try
to highlight some of the common mistakes or bugs that plague scientific computing programs written in Fortran.
We will also try to offer advice, compiler flags, and tools to track down and remedy common bugs.

8.1 Useful gfortran Compiler Flags for Debugging
There are many useful gfortran command line options to tell the compiler to include additional information inside
the compiled program useful for debugging or alter the behavior of the compiled program to help detect bugs.

• -g: Generates debugging information that is usable in the GNU Debugger (GDB). It is possible to include
even more debugging information with the -g3 flag.

• -fbacktrace: Specifies that if a program crashes, a backtrace should be produced when possible that shows
what function(s) or subroutine(s) were called/active at the time of the error.

• -fbounds-check: Add a check that the array index is within bounds of the array every time an array element
is accessed. This substantially slows down a program using it, but is a very useful option to locate
bugs related to arrays and memory access. Without this flag, an illegal array access will produce either a
subtle erorr that might not be apparent until later in the program execution or will cause an immediate
segmentation fault with very little information about the cause of the error.

• -ffpe-trap=zero,overflow,underflow: This flag tells the Fortran compiler to trap the listed floating point
errors (fpe). Including zero on the list means that if the program attempts to divide by zero it will simply
terminate rather than setting a result to +Infinity or NaN and continuing. Similarly, if overflow is on the
list the program will halt if it tries to store a number larger than can possibly be stored in a given variable
type, e.g. the largest a REAL(KIND=RP) can be is approximately 1.79E+308.
Trapping underflow halts the computation if a number is too small because the exponent is a very large
negative number. For a REAL(KIND=RP) can be is approximately 2.23E-308. If we do not trap underflow
values, then they will be set to 0. Although this is generally the correct thing to do, computing with such
small number likely indicates a bug of some sort in the program. Thus, it is useful to trap them.

In addition to debugging compiler flags there are also flags to throw warnings during compilation. To be clear
these are warnings about section of code that are “allowed” but their syntax or use are potentially questionable.
These sections of code might be correct, but the warnings will often identify bugs before the program is even run.

• -Wall: Short for warn about all. This flag tells gfortran to generate warnings about many common sources
of bugs, such as having a FUNCTION or SUBROUTINE with the same nae as an INTRINSIC one, or passing
the same variable as an INTENT(IN) and an INTENT(OUT) argument of the same SUBROUTINE. Despite
this compiler flag’s name, this does not turn on all possible warning options.

• -Wextra: In conjunction with -Wall, gives warnings about even more potential problems. In particular, this
flag warns about SUBROUTINE arguments that are never used, which is almost always a bug.
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• -Wconversion: Warns about implicit conversion between data types. For example, say we want a double
precision variable sqrt3 to hold an accurate value for the square root of 3. In the code we might accidentally
write sqrt3 = SQRT(3.). Because 3. is a single precision value, the single-precision SQRT function will be
used by the PROGRAM, and the value of variable sqrt3 will possess single precision accuracy (even though
it is declared as a double precision variable). -Wconversion will generate a warning here, because the single
precision result of SQRT is implicitly converted into a double precision value.

• -pedantic: Generate warnings about language features that are supported by gfortran but are not part of
the official Fortran95 standard. This is particularly useful if you want ensure your code will compile and run
with any Fortran95 compiler.

8.2 Examples of Debugging
Here we create some small examples to demonstrate some of the practices we use to debug Fortran programs. One
of the first things to check in your code is the calls to any FUNCTION or SUBROUTINE. Are the arguments
passed in the correct order such that the routine will compute what is expected? It sounds silly, but this type
of bug can be quite common. Especially if you are calling a routine that you didn’t write (due to a collaborative
project) or you wrote a long time ago. This type of bug can be very tricky to find. This is because compiler flags
will not notice argument ordering issues, as long as the variable types and/or dimensions all match correctly then
the compiler will not throw any errors.

A main take away for debugging is output information and data during the execution either to the screen
or to a file! It is incredibly difficult to just stare at a piece of code and parse what all is happening and what could
be going wrong. It is much easier to track values through printing. To illustrate this consider the following scenario:

1. The code compiles and runs.

2. You look at the data produced at the end of the program and see that values have become NaN.

In a perfect world this wouldn’t happen, because a code that produces NaN has crashed in someway but was allowed
to continue to run. This wastes computing resources. How do we track down the offending routine that causes a NaN.
A compiler flag to trap overflow might work, but not always. For example, a NaN can occur when you take SQRT
or LOG of a negative number and try to store it in a REAL variable rather than a COMPLEX variable. Instead
what we can do is intermittently PRINT values to the screen. This will help identify where in the PROGRAM the
value of a variable becomes undefined.

To be more specific, we examine a problem involving array indexing and how it can lead to errors. We also
demonstrate how the compiler flags discussed above help to prevent such array access inconsistencies. Let’s look at
a dummy PROGRAM that attempts to access memory in a DO loop that is not defined.

arrayBug.f90
PROGRAM arrayBug

USE Constants
IMPLICIT NONE
INTEGER :: i
REAL(KIND=RP),DIMENSION(10) :: Vec

! Fill the array Vec with values
DO i = 1,10

Vec(i) = i
END DO! i

... other code could happen
! Print the values to screen

DO i = 0,10
PRINT*,’i=’,i,Vec(i)

END DO! i
END PROGRAM arrayBug

We see that the second loop is trying to access data at Vec(0), which does not exist. What happens if we compile
and run this program normally? Sometimes this will cause a segmentation fault, but more often the code will
compile and run producing something like
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arrayBug.f90 - Standard Run
gfortran arrayBug.f90
./a.out
i= 0 1.4729579099465083E-319
i= 1 1.0000000000000000
i= 2 2.0000000000000000
i= 3 3.0000000000000000
i= 4 4.0000000000000000
i= 5 5.0000000000000000
i= 6 6.0000000000000000
i= 7 7.0000000000000000
i= 8 8.0000000000000000
i= 9 9.0000000000000000
i= 10 10.000000000000000

We see that the code ran but when it went to access the non-existent Vec(0) it produced a kind of “garbage”
value. Now we compile the program with the -fbounds-check flag to see how it helps detect such array bound
inconsistencies.

arrayBug.f90 - Array Check Run
gfortran -fbounds-check arrayBug.f90
./a.out
At line 13 of file arrayBug.f90
Fortran runtime error: Index ’0’ of dimension 1 of array ’vec’ below lower bound of 1

Great! The compiler found that we had accidentally tried to access an index in the one dimensional array Vec that
was outside of its index range. Note that the flag -ffpe-trap=underflow would not catch this bug because we
didn’t operate on the non-existent value “stored” in Vec(0). This was purely an array indexing issue.

While we are discussing memory a useful tool called valgrind is available to track the memory usage of
PROGRAM. It is particularly useful to identify memory leaks. These occur when a routine ALLOCATEs memory
but does not DEALLOCATE it. This memory is then never released back to the heap and is forever unavailable
to the program until termination. If memory leaks are severe enough (or occur often enough) the PROGRAM will
eat through all available RAM and the it will crash. A simple example of a memory leak is found below.

memoryLeak.f90
SUBROUTINE memoryLeak(N)

USE Constants,ONLY: RP
IMPLICIT NONE
INEGER,INTENT(IN) :: N

! local variables
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:,:,:) :: A

!
ALLOCATE(A(0:N,0:N,0:N))

! some computations
!

RETURN
END SUBROUTINE memoryLeak

Once the PROGRAM leaves this SUBROUTINE the memory allocated for A will be unavailable. Further, if this
SUBROUTINE is called a second time it will, again, ALLOCATE memory which, in turn, will be lost once we leave
the current routine. This more concretely illustrates the issue that if we do this enough and we will run out of heap
memory! We can fix this memory leak by adding a corresponding DEALLOCATE statement before we leave the
routine. This ensures that the allocated memory remains within the “scope” of the current routine and is not lost
somewhere in the ether.

memoryLeakFix.f90
SUBROUTINE memoryLeakFix(N)

USE Constants,ONLY: RP
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IMPLICIT NONE
INEGER,INTENT(IN) :: N

! local variables
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:,:,:) :: A

!
ALLOCATE(A(0:N,0:N,0:N))

! some computations
DEALLOCATE(A)

!
RETURN

END SUBROUTINE memoryLeakFix

As a final example we investigate how assigning the INTENT of a variable incorrectly can lead to bugs. In this
case, say we have a SUBROUTINE where information should be passed into the routine, operated upon, and then
passed back to the calling routine.

intentBug.f90
SUBROUTINE intentBug(work_array,N)

USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(0:N),INTENT(OUT) :: work_array

! local variables
INTEGER :: i

!
DO i = 0,N

work_array(i) = 2.0_RP*work_array(i) - 1.4_RP
END DO! i

!
RETURN

END SUBROUTINE intentBug

This bug is more subtle than the previous ones discussed. It gets into the details of how Fortran and its INTENT
functionality work. This code compiles and runs. However, the work array is assigned INTENT(OUT). In this
case, it is a static array of size N + 1 but when the memory is set aside Fortran does not give it any data from the
calling routine (because of the given intent). The Fortran compiler sees INTENT(OUT) and decides that it only
has to pass data back to the calling routine. This is the issue. The SUBROUTINE relies on data that should
be given in the work array, but due to the INTENT(OUT) the work array is filled with “garbage” data initially.
This pollutes the data produced by the SUBROUTINE. The fix is to change to INTENT(INOUT) which tells the
compiler to pass data into the routine as well.

intentBugFix.f90
SUBROUTINE intentBugFix(work_array,N)

USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(0:N),INTENT(INOUT) :: work_array

! local variables
INTEGER :: i

!
DO i = 0,N

work_array(i) = 2.0_RP*work_array(i) - 1.4_RP
END DO! i

!
RETURN

END SUBROUTINE intentBugFix
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Chapter 9: Putting It All Together

Now we have some proficiency in Fortran and can tackle a general programming project. That is the purpose of
this Chapter. We will walkthrough a larger project that will pull from many aspects of the previous Chapters. In
particular, we want to design a program that is well structured and divided into digestible pieces. This paradigm
makes the code easier to read, easier to debug, and easier to reuse parts of it in other projects. The problem at hand
with come from the numerical approximation of a partial differential equation (PDE) in one spatial dimension. The
numerical scheme itself will be kept quite simple as the purpose here is to teach good practices in Fortran coding
(not necessarily to build up knowledge of numerical PDE solvers).

9.1 Problem description
We wish to approximate the solution of the linear advection equation

ut + fx = ut + aux = 0,

where subscripts represent partial derivatives in time or space, u is the solution, and f = au is the flux function.
We assume, without loss of generality, that the wave speed a > 0 and is a constant. We solve the PDE on a one
dimensional domain [0, 1]. We assume periodic boundary conditions

u(0, t) = u(1, t).

The initial value problem is fully prescribed once we consider an initial condition for the solution

u(x, 0) = u0(x).

The analytical solution of the linear advection equation is given by the initial condition translated by an amount
proportional to the wave speed and the time that has passed, i.e.,

uex(x, t) = u0(x− at).

In practice, having an analytical solution is useful to verify theoretical properties of your numerical scheme, such
as the order of accuracy or the convergence rate.

9.2 Discretization of the Problem
We forgo presenting the theory and motivation of how we arrive at the complete discretization of the linear advection
equation and simply state its discrete version. We choose to use Forward Euler for the discretization in time and
a biased (or “upwind”) discertization of the flux derivative in space. The superscript n denotes the time level of the
approximation and the subscript j represents the spatial discretization. The discrete version of the PDE is given
by

un+1
j = un

j −
∆t
∆x

(
fn

j − fn
j−1
)
, j = 1, . . . , N.

Here, it is assumed the domain is [0, 1] which gives

∆x = 1
N
.

One way to specify the time step (that is very ad hoc, there are much better ways to do this) is by fixing a number
of time steps and dividing the final time, i.e,

∆t = T

#steps
.

The discretization is kept general in terms of the flux to increase the portability of any routines we write.
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9.3 Designing the Project
Now we have been handed a discretization of the linear advection equation and tasked with creating a Fortran
program to numerically solve the problem. Before we tackle this task and start writing code we should take some
time and think about the program’s structure. What parts of the algorithm depends on another? How should I
read in data? How should I export data? In a given time step, what are the tasks to prepare the solution for
advancement to the next time step? Thinking about these questions we can organize some of our thoughts:

• Every routine will need a precision parameters from the Constants.f90 MODULE.

• Computing the flux at a given node xj requires the solution at the current time at that note, un
j , as well as

the wave speed a.

• We need to set the periodicity of the problem through the fluxes.

• Once the fluxes are all computed we can determine the flux difference.

• From the flux difference we can update the solution at a given node, advancing in time.

• We can put this process into a time loop that advances until the final time T .

• During the time integration we can export data files to plot the solution as it evolves over time.

• A driving program is necessary to determine the final time, the number of time steps, the number of nodes
N .

• The driver can also manage memory for the solution array as well as the initial condition.

These obviously aren’t all the aspects organizing and implementing the coding project. But, it is a good start such
that we can construct our program, filling in any gaps along the way.

9.4 Implementing the Project
We have a certain skeleton of what we need to implement this project and solve the linear advection equation
numerically. First, we need a version of the Constants.f90 module. In this case, we also include the wave speed a.

Constants.f90
MODULE Constants

IMPLICIT NONE
INTEGER ,PARAMETER :: RP = SELECTED_REAL_KIND(15)
REAL(KIND=RP),PARAMETER :: pi = 4.0_RP*ATAN(1.0_RP)
REAL(KIND=RP),PARAMETER :: a = 1.0_RP

END MODULE Constants

Next, we create a set of routines that operate on the fluxes. This includes a routine to precompute and fill the flux
with values, another routine that computes the flux difference needed by the PDE approximation, and a routine to
set the initial condition of the problem. We do this to maintain flexibility of the code if we wanted to solve for a
different flux function.

fluxRoutines.f90
MODULE fluxRoutines

IMPLICIT NONE
! Nothing to declare
CONTAINS
!

SUBROUTINE fillFlux(u,f,N)
USE Constants
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(N) ,INTENT(IN) :: u
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REAL(KIND=RP),DIMENSION(0:N),INTENT(OUT) :: f
! Local variables

INTEGER :: i
!

f = 0.0_RP
DO i = 1,N

f(i) = a*u(i)
END DO! i

! set periodic boundary conditions
f(0) = f(N)

!
RETURN

END SUBROUTINE fillFlux
!
!///////////////////////////////////////////////////////////////////////////
!

SUBROUTINE fluxDifference(f,df,N)
USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(0:N),INTENT(IN) :: f
REAL(KIND=RP),DIMENSION(N) ,INTENT(OUT) :: df

! Local variables
INTEGER :: i

!
df = 0.0_RP
DO i = 1,N

df(i) = f(i) - f(i-1)
END DO! i

!
RETURN

END SUBROUTINE fluxDifference
!
!///////////////////////////////////////////////////////////////////////////
!

SUBROUTINE InitialCondition(x,u,N)
USE Constants,ONLY: RP,pi
IMPLICIT NONE
INTEGER, INTENT(IN) :: N
REAL(KIND=RP),DIMENSION(N),INTENT(IN) :: x
REAL(KIND=RP),DIMENSION(N),INTENT(OUT) :: u

! Just an example. Can use different functions
u = SIN(2.0_RP*pi*x) + 1.0_RP

!
RETURN

END SUBROUTINE initialCondition
END MODULE fluxRoutines

We create a routine for plotting the solution to a file that can be visualized with VisIt.
Plotter.f90

MODULE Plotter
IMPLICIT NONE

! Nothing to declare
CONTAINS
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SUBROUTINE ExportToTecplot_1D(x,u,fUnit,N)
! File writer routine to make movies

USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N,fUnit
REAL(KIND=RP),DIMENSION(N),INTENT(IN) :: x
REAL(KIND=RP),DIMENSION(N),INTENT(IN) :: u

! Local variables
INTEGER :: j

!
WRITE(fUnit,*)’#u’
DO j = 1,N

WRITE(fUnit,*)x(j),u(j)
END DO! j

!
RETURN

END SUBROUTINE ExportToTecplot_1D
END MODULE Plotter

Now we have the functionality in place to compute the fluxes and the flux difference as well as plot the solution
to a file. Thus, we are prepared to step the solution forward in time. To do so, we create a routine that steps
the solution forward a single time step. Moreover, we write an integration routine that takes the solution up to
the final time T . During the time integration we also put in logic to output solution files on a fixed interval stride
depending on the number of time steps the user wants to use. These files will be saved in a folder called ./Movies
with sequentially written files. To output these movie files in slightly cumbersome because of how we have to track
the current number of files written and convert that into a file name. However, it is invaluable to be able to output
solution snapshots and examine the approximate solution over time.

timeIntegration.f90
MODULE TimeIntegration

IMPLICIT NONE
! Nothing to declare
CONTAINS
!

SUBROUTINE Integrate(x,u,T,dt,dx,N)
USE Constants,ONLY: RP
USE Plotter ,ONLY: ExportToTecplot_1D
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP) ,INTENT(IN) :: dx,T,dt
REAL(KIND=RP),DIMENSION(N),INTENT(INOUT) :: u,x

! Local variables
INTEGER :: num_steps,j,fUnit,m
REAL(KIND=RP) :: local_t
CHARACTER(LEN=16) :: fName = "Movies/UXX.curve"
CHARACTER(LEN=2) :: numChar
m = 0
local_t = 0.0_RP
num_steps = T/dt

! Time integration loop
DO j = 0,num_steps-1

local_t = (j+1)*dt
CALL StepByEuler(u,dx,dt,N)
IF (MODULO(j,50).EQ.0) THEN

! Print solution every 50 time steps for movies
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m = m + 1
WRITE(numChar,’(i2)’)m
IF (m.GE.10) THEN

fName(9:10) = numChar
ELSE

fName(9:9) = "0"
fName(10:10) = numChar(2:2)

END IF
OPEN(UNIT=11,FILE=fName)
CALL ExportToTecplot_1D(x,u,11,N)
CLOSE(11)

END IF
END DO! j

!
RETURN

END SUBROUTINE Integrate
!
!///////////////////////////////////////////////////////////////////////////
!

SUBROUTINE StepByEuler(u,dx,dt,N)
USE Constants ,ONLY: RP
USE fluxRoutines,ONLY: fillFlux,fluxDifference
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
REAL(KIND=RP) ,INTENT(IN) :: dx,dt
REAL(KIND=RP),DIMENSION(N),INTENT(INOUT) :: u

! Local variables
INTEGER :: i
REAL(KIND=RP),DIMENSION(0:N) :: f
REAL(KIND=RP),DIMENSION(N) :: fdiff

!
CALL fillFlux(u,f,N)
CALL fluxDifference(f,fdiff,N)
DO i = 1,N

u(i) = u(i) - dt*fdiff(i)/dx
END DO! i

!
RETURN

END SUBROUTINE StepByEuler
END MODULE TimeIntegration

The next step in the project is to write a driving program that will allocate the memory, perform the time
integration up to the final time T while writing intermediate solution files, and then deallocate memory. However,
we need a way to input this run time information into the program. We can read in from the terminal, but as
we discussed before this becomes cumbersome if we want to run the linear advection solver for many different
configurations, resolutions, or final times. Therefore, before we write the driver we put together some file reading
routines to get information from a file input.dat. We assume the input file has the following form.

input.dat
number of nodes = 250
time steps = 2000
final time = 0.5

This is helpful because we can (somewhat) label what value is being read into the program. The file reading routines
will be designed to detect an = operator and get the numerical value to the right.
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fileReading.f90
MODULE FileReadingRoutines

USE Constants,ONLY:RP
IMPLICIT NONE

! Nothing to declare
CONTAINS
!

FUNCTION GetRealValue(inputLine) RESULT(realNum)
! Read the value of a real number declared after an = sign in a inputLine

CHARACTER(LEN=*) :: inputLine
REAL(KIND=RP) :: realNum
INTEGER :: strLen,leq

!
leq = INDEX(inputLine,’=’)
strLen = LEN_TRIM(inputLine)
READ(inputLine(leq+1:strLen),*)realNum

!
END FUNCTION GetRealValue

!
!///////////////////////////////////////////////////////////////////////////
!

FUNCTION GetIntValue(inputLine) RESULT(intNum)
! Read the value of an integer number declared after an = sign in an inputLine

CHARACTER(LEN=*) :: inputLine
INTEGER :: intNum,strLen,leq

!
leq = INDEX(inputLine,’=’)
strLen = LEN_TRIM(inputLine)
READ(inputLine(leq+1:strLen),*)intNum

!
END FUNCTION GetIntValue

END MODULE FileReadingRoutines

Finally, we are prepared to create the driver for the program.
fileReading.f90

PROGRAM SolveLinearAdvection
USE FileReadingRoutines
USE Constants ,ONLY: RP
USE FluxRoutines ,ONLY: InitialCondition
USE TimeIntegration,ONLY: Integrate
IMPLICIT NONE
INTEGER :: N,tsteps,i
REAL(KIND=RP) :: dx,T,dt
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:) :: u,x
CHARACTER(LEN=132) :: inputLine

!
! Open the input file

OPEN(UNIT=24601,FILE=’input.dat’)
! Read the number of nodes for the approximation

READ(24601,’(A132)’)inputLine
N = GetIntValue(inputLine)

! Read the number of time steps
READ(24601,’(A132)’)inputLine
tsteps = GetIntValue(inputLine)
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! Read the final time
READ(24601,’(A132)’)inputLine
T = GetRealValue(inputLine)

! Close the input file
CLOSE(33)

!
! Allocate memory

ALLOCATE(u(N),x(N))
! Compute delta t

dt = T/tsteps
! Compute delta x assuming interval is [0,1]

dx = 1.0_RP/N
! Fill the nodes where the solution is stored

DO i = 1,N
x(i) = dx*i

END DO! i
! Initialize the solution

CALL InitialCondition(x,uu,N)
! Solve the PDE, internally this prints the solution

CALL Integrate(x,uu,T,dt,dx,N)
! Deallocate memory

DEALLOCATE(u,x)
END PROGRAM SolveLinearAdvection

9.5 Compiling the Project
Despite the relative simplicity of this project, that is the update to the solution from one time level to the next, it
contains many source files. So, the compilation of this project can be somewhat unwieldy by hand. Therefore, we
provide a Makefile to build the source of the project to create an executable.

linAdv Makefile
F90 = /usr/local/bin/gfortran
FFLAGS = -Ofast
# Object Files for build
OBJS = \
Constants.o \
FileReading.o \
FluxRoutines.o \
Plotter.o \
SolveLinearAdvection.o \
TimeIntegration.o \

linAdv : $(OBJS)
$F90 -o $@ $(OBJS)

# Object dependencies and compilation
Constants.o : ./Constants.f90

$(F90) -c $(FFLAGS) $(INCLUDES) -o $@ ./Constants.f90

FileReading.o : ./FileReading.f90 \
Constants.o

$(F90) -c $(FFLAGS) $(INCLUDES) -o $@ ./FileReading.f90

FluxRoutines.o : ./FluxRoutines.f90 \
Constants.o

$(F90) -c $(FFLAGS) $(INCLUDES) -o $@ ./FluxRoutines.f90
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Plotter.o : ./Plotter.f90 \
Constants.o

$(F90) -c $(FFLAGS) $(INCLUDES) -o $@ ./Plotter.f90

SolveLinearAdvection.o : ./SolveLinearAdvection.f90 \
FluxRoutines.o \
FileReading.o \
Constants.o \
TimeIntegration.o

$(F90) -c $(FFLAGS) $(INCLUDES) -o $@ ./SolveLinearAdvection.f90

TimeIntegration.o : ./TimeIntegration.f90 \
Plotter.o \
Constants.o \
FluxRoutines.o

$(F90) -c $(FFLAGS) $(INCLUDES) -o $@ ./TimeIntegration.f90
# Utility targets
.PHONY: clean
clean:

rm *.o *.mod
rm linAdv

Once you compile the project it is ready to run! You can adjust the parameters in input.dat to change the
spatial or temporal resolution. Also, you can run the program for a longer time to see the effect of numerical
dissipation on the approximate solution. This Chapter was just an exercise in coding together a small numerical
project in Fortran. Obviously, there is much more to investigate if the algorithms are implemented correctly. This
would include testing the convergence rates, which should be first order in both space and time based on the building
blocks of the numerical algorithm. We could also add functionality to plot the exact solution as well, because it is
known to just be the shifted initial condition for the linear advection equation.

For completeness we include a plot in Figure 2 of the computed solution against the exact solution for the
parameters N = 300, #steps = 2001, T = 1.0 and initial condition u0(x) = sin(2πx) + 1. Note that there is
noticeable numerical dissipation effects in the approximate solution compared to the exact solution.

Figure 2: Approximate and exact solution of the linear advection equation.
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Chapter 10: OOP for Discontinuous Galerkin (DG) Method
We’ve presented Fortran as an option for an object oriented programming language. We’ll now examine some very
particular examples of how Fortran can be used to implement a discontinuous Galerkin spectral element method
(DGSEM) in one spatial dimension. We will introduce a couple derived TYPE variables to act as classes that make
the structure of the program simpler. Note, this is one way to organize a 1D DGSEM code, but it is not the
only way. Know that this is a general overview and these will only be code snippets, rather than a full, working
implementation. We will outline three classes that could be used in a one dimensional DG implementation:

• Nodal DG Storage

• DG Element

• DG Mesh

We note that the discussion follows closely the object oriented DG structure introduced in the book by David
Kopriva, “Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers.”
Springer Science & Business Media, 2009.

After the discussion of the DG classes we will give implementations for outputting the DG solution to a file for
plotting. We give provide working code (for one, two, and three dimensions) to create TecPlot files, that can be
plotted in VisIt. We also provide examples of using matplotlib to create convergence plots.

10.1 Nodal DG Storage Class
Let’s start with a class which precomputes and stores the necessary information for the DG first derivative approx-
imation. We make no assumptions about whether the strong or weak form of the DG approximation is used, so we
will store the

• order of the approximation, N .

• Lagrange interpolating polynomial basis evaluated at the endpoints, `j(±1).

• quadrature weights, wj . Alternatively, for computational efficiency, one could store the inverse of the quadra-
ture weights 1/ωj . This is because division is more expensive than multiplication, so if we only perform the
division once and multiply thereafter we will see a slight performance boost.

• polynomial derivative matrix, Dnj = `′j(ξn).

• negative transpose of the polynomial derivative matrix scaled by the quadrature weights, D̂jn = −Dnjwn

wj
.

In the psuedocode for NodalDGStorageClass (Alg. 7) we group the data and procedures together. The constructor
will allocate all necessary memory and precompute the data. The destructor will deallocate the memory (thus
destroying any data that memory contained).

Algorithm 7: NodalDGStorageClass: Precomputes and stores derivative matrices, quadrature weights,
etc.

Class NodalDGStorage
Data:

N , {D}N
i,j=0,

{
D̂i,j

}N

i,j=0
, {`j(−1)}N

j=0, {`j(1)}N
j=0, {wj}N

j=0

Procedures:
ConstructNodalDGStorage(N)
DestructNodalDGStorage()

End Class NodalDGStorage
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Next, we give an implementation of the NodalDGStorageClass in form of a MODULE. The constructor in this
case builds a DG approximation space using the Legendre-Gauss nodes and weights. To do so we USE specific
routines from modules for interpolation and quadrature. We don’t explicit form these modules, but complete
pseudocode can be found in the book by Kopriva. If you want to change to a different set of quadrature points then
you invoke a CALL to a different SUBROUTINE. Note that this implementation combines many of the Fortran
topics covered previously, most notably dynamic arrays. We define a NodalDGStorage TYPE and treat it as an
object. Recall that to access members of an object you use the % command.

NodalDGStorageClass.f90
MODULE NodalDGStorageClass

USE Constants
IMPLICIT NONE

!
TYPE NodalDGStorage

INTEGER :: N
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:) :: l_at_minus_one
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:) :: l_at_one
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:) :: weights
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:,:) :: D
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:,:) :: D_hat

END TYPE NodalDGStorage
!
CONTAINS
!

SUBROUTINE ConstructNodalDGStorage(this,N)
USE Interpolation,ONLY: BarycentricWeights,LagrangeInterpolatingPolynomial, &

PolynomialDerivativeMatrix
! Note the continuation marker in Fortran & that allows a longer line to be broken apart

USE Quadrature ,ONLY: LegendreGaussNodesAndWeights
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
TYPE(NodalDGStorage),INTENT(OUT) :: this

! Local variables
REAL(KIND=RP),DIMENSION(0:N) :: x,BaryWeights ! nodes and weights of interpolation
INTEGER :: i,j

ALLOCATE(this%l_at_minus_one(0:N),this%l_at_one(0:N),this%weights(0:N))
ALLOCATE(this%D(0:N,0:N),this%D_hat(0:N,0:N))
this%l_at_minus_one = 0.0_RP
this%l_at_one = 0.0_RP
this%weights = 0.0_RP
this%D = 0.0_RP
this%D_hat = 0.0_RP
this%N = N

!
CALL LegendreGaussNodesAndWeights(x,this%weights,N)
CALL BarycentricWeights(x,BaryWeights,N)
CALL LagrangeInterpolatingPolynomial(x,BaryWeights,this%l_at_minus_one,-1.0_RP,N)
CALL LagrangeInterpolatingPolynomial(x,BaryWeights,this%l_at_one , 1.0_RP,N)
CALL PolynomialDerivativeMatrix(this%D,x,N)
DO j = 0,N

DO i = 0,N
this%D_hat(i,j) = -this%D(j,i)*(this%weights(j)/this%weights(i))

END DO! i
END DO! j
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!
RETURN

END SUBROUTINE ConstructNodalDGStorage
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE DestructNodalDGStorage(this)
IMPLICIT NONE
TYPE(NodalDGStorage) :: this

this%N = NONE ! NONE defined as -1
DEALLOCATE(this%l_at_minus_one,this%l_at_one,this%weights,this%D_hat,this%D)

END SUBROUTINE DestructNodalDGStorage
!
END MODULE NodalDGStorageClass

10.2 DG Element Class
Inherent in the DGSEM approximation is that the domain of interest is broken into subdomains (called elements)
and the solution on each element is taken to be a polynomial of degree N . It will make the workflow of an
implementation easier to follow if it can match this element construct. Therefore, we create the DGElementClass.

The DGElementClass, whose data and procedures are gathered in Alg. 8, stores the element’s geometry data and
solution. The geometry data for a one dimensional element is the left and right boundary locations and the length.
Other data stored in an element includes the numerical fluxes, F∗,L/R, on the left and the right of the element and
the interpolated values of the solution, QL/R, from which to compute the numerical flux. For convenience, we also
have the element store the number of equations. Finally, we store the solution and time derivative on each element.

To compute the weak form, one dimensional spatial derivative on the kth element

Q̇k

j = − 2
∆xk

{
`j(1)
wj

F∗
(
Qk(1),Qk+1(−1), x̂

)
− `j(−1)

wj
F∗
(
Qk−1(1),Qk(−1),−x̂

)
+

N∑
m=0

FmD̂jm

}
,

where j = 0, . . . , N and k = 1, . . . ,K we need access to the data stored in the NodalDGStorageClass. Thus, we pass
an instance of the NodalDGStorageClass, called dG, to the derivative computation implemented in the procedure
SystemDGDerivative.

Algorithm 8: DGElementClass: Stores the solution, time derivative, etc. on a given subdomain.

Class DGElement
Data:

nEqn, ∆x, xL, xR,
{

F∗,L
}nEqn

n=1
,
{

F∗,R
}nEqn

n=1
,
{

QL
}nEqn

n=1
,
{

QR
}nEqn

n=1
,
{
Qj,n

}N ;nEqn

j=0;n=1,
{
Q̇j,n

}N ;nEqn

j=0;n=1

Procedures:
ConstructDGElement(xL,xR,nEqn)
LocalTimeDerivative()
SystemDGDerivative(dG)
DestructDGElement()

End Class DGElement

Below we give an implementation of the DGElementClass. There are lots of moving parts to a DG implementa-
tion, so it is helpful to break it apart into manageable chunks by way of a MODULE. We note that in Fortran a line
can only be 132 characters long. So, if it turns out a FUNCTION or SUBROUTINE call exceeds this limit we use the
continuation operator & to extend a single line across multiple lines. We show an example in DGElementClass.f90.

DGElementClass.f90
MODULE DGElementClass

USE NodalDGStorageClass
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IMPLICIT NONE
!

TYPE DGElement
REAL(KIND=RP) :: delta_x,xL,xR
INTEGER :: nEqn
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:) :: QR,QL,FstarR,FstarL
REAL(KIND=RP),ALLOCATABLE,DIMENSION(:,:) :: Q,Q_dot

END TYPE DGElement
!
CONTAINS
!

SUBROUTINE ConstructDGElement(this,nEqn,xL,xR,N)
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N
TYPE(DGElement),INTENT(INOUT) :: this
REAL(KIND=RP) ,INTENT(IN) :: xL,xR
INTEGER ,INTENT(IN) :: nEqn

!
ALLOCATE(this%QR(nEqn),this%QL(nEqn),this%FstarR(nEqn),this%FstarL(nEqn))
ALLOCATE(this%Q(0:N,nEqn),this%Q_dot(0:N,nEqn))
this%nEqn = nEqn
this%xL = xL
this%xR = xR
this%delta_x = xR - xL
this%QR = 0.0_RP
this%QL = 0.0_RP
this%FstarR = 0.0_RP
this%FstarL = 0.0_RP
this%G = 0.0_RP
this%Q = 0.0_RP
this%Q_dot = 0.0_RP

!
RETURN

END SUBROUTINE ConstructDGElement
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE LocalTimeDerivative(this,dG)
IMPLICIT NONE
TYPE(DGElement) ,INTENT(INOUT) :: this
TYPE(NodalDGStorage),INTENT(IN) :: dG

! Local variables
INTEGER :: j,N,nEqn
REAL(KIND=RP),DIMENSION(0:dG%N,this%nEqn) :: F,F_prime

!
N = dg%N
nEqn = this%nEqn
DO j = 0,N

CALL Flux(this%Q(j,:),F(j,:),nEqn)
END DO! j

! the & is used as a continuation operator if a line in Fortran becomes too long
CALL SystemDGDerivative(this%FstarR,this%FstarL,F,F_prime,dG%D_hat,dG%weights,&

& dG%l_at_one,dG%l_at_minus_one,nEqn,N)
! Scale by the inverse of the Jacobian
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this%Q_dot = (-2.0_RP/this%delta_x)*F_prime
!

RETURN
END SUBROUTINE LocalTimeDerivative

!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE SystemDGDerivative(FR,FL,F,Fprime,Dhat,weights,l_one,l_minus_one,nEqn,N)
IMPLICIT NONE
INTEGER ,INTENT(IN) :: nEqn,N
REAL(KIND=RP),DIMENSION(nEqn) ,INTENT(IN) :: FR,FL
REAL(KIND=RP),DIMENSION(0:N,nEqn),INTENT(IN) :: F
REAL(KIND=RP),DIMENSION(0:N,nEqn),INTENT(OUT) :: Fprime
REAL(KIND=RP),DIMENSION(0:N,0:N) ,INTENT(IN) :: Dhat
REAL(KIND=RP),DIMENSION(0:N) ,INTENT(IN) :: weights,l_one,l_minus_one

! Local variables
INTEGER :: i,j

!
F_prime = 0.0_RP

! Volume terms
DO i = 1,nEqn

CALL MxVDerivative(Fprime(:,i),F(:,i),Dhat,N)
END DO! i

! Surface terms
DO j = 0,N

DO i = 1,nEqn
Fprime(j,i) = Fprime(j,i) + (FR(i)*l_one(j) + FL(i)*l_minus_one(j))/weights(j)

END DO! i
END DO! j

!
RETURN

END SUBROUTINE SystemDGDerivative
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE DestructElement(this)
IMPLICIT NONE
TYPE(DGElement),INTENT(INOUT) :: this

!
this%nEqn = NONE
this%xL = 0.0_RP
this%xR = 0.0_RP
this%delta_x = 0.0_RP
DEALLOCATE(this%QR,this%QL,this%FstarR,this%FstarL,this%Q,this%Q_dot)

!
RETURN

END SUBROUTINE DestructElement
!
END MODULE DGElementClass

10.3 DG Mesh Class
We manage the data for the approximation on the entire domain at the mesh level. The DGMeshClass, described
in Alg. 9, stores the number of elements K, the elements themselves, an instance of NodalDGStorage, and the
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connections between the elements. The sharedNodePointers store pointers to the elements on the left and the right
of an interface and simplify the computation of the numerical flux. We assume here that xR > xL so that the QL

and QR arrays are on the left and right of the elements. That way we do not have to store information in the
sharedNodePointers to distinguish between which corresponds to the left and which to the right. For a two or three
dimensional implementations, we would have to be more general.

The constructor for the mesh class creates the elements and connections. The constructor will take the number of
elements and the location of the element boundaries as input. It constructs an instance of the NodalDGStorage class
and uses the element boundary information to construct the elements. The element connections are constructed
next. Since there is essentially no difference between a physical boundary and an element boundary, the limits on
the pk array include the endpoints. At the physical boundaries we set the neighboring element to a defined constant
NONE. Later, we can test for being on a boundary by checking to see if one of the elements equals NONE.

The global time derivative procedure performs four basic operations. First, it interpolates the solutions to
the boundaries on each of the elements. It then computes the physical boundary values by way of a procedure
ExternalState whose implementation is problem dependent. We pass a parameter with defined values of LEFT or
RIGHT to the procedure so that different boundary conditions can be applied at the left and right boundaries.
For full generality, we also pass the boundary value of the solution to allow for the implementation of reflecting
boundary conditions. Then the numerical fluxes are computed for each element boundary point and sent to the
appropriate element. Again, we have assumed that the elements are laid out left to right. Finally, each element
computes its local time derivative values.

Algorithm 9: DGMeshClass: Stores the elements and DG solution space for the global approximation.

Class DGMesh
Data:
K // # of elements
{ek}K

k=1 // Elements{
pk
}K

k=0 // sharedNodePointers
Procedures:

ConstructDGMesh(K,N ,{xk}K
n=0)

GlobalTimeDerivative(t)
DestructDGMesh()

End Class DGMesh

Finally, we present an implementation of the DGMeshClass. Note the next step to an approximation would be
to send the computational mesh to an explicit time integration routine (like Runge-Kutta or Adams-Bashforth) to
complete the solution of the PDE numerically.

DGMeshClass.f90
MODULE DGMeshClass

USE DGElementClass
IMPLICIT NONE

!
TYPE NodePointers

INTEGER :: eLeft,eRight
END TYPE NodePointers

!
TYPE DGMesh

INTEGER :: K
TYPE(NodalDGStorage) :: dg
TYPE(DGElement) ,ALLOCATABLE,DIMENSION(:) :: e
TYPE(NodePointers),ALLOCATABLE,DIMENSION(:) :: p

END TYPE DGMesh
!
CONTAINS
!
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SUBROUTINE ConstructMesh1D(this,x_nodes,K,N,nEqn)
IMPLICIT NONE
TYPE(DGMesh) ,INTENT(INOUT) :: this
INTEGER ,INTENT(IN) :: K,N,nEqn
REAL(KIND=RP),DIMENSION(0:K),INTENT(IN) :: x_nodes

! Local variables
INTEGER :: i

!
this%K = K
ALLOCATE(this%e(K),this%p(0:K))
CALL ConstructNodalDGStorage(this%dg,N)
DO i = 1,K

CALL ConstructDGElement(this%e(i),nEqn,x_nodes(i-1),x_nodes(i),N)
END DO! i
DO i = 1,K-1

this%p(i)%eLeft = i
this%p(i)%eRight = i+1

END DO! i
this%p(0)%eLeft = NONE
this%p(0)%eRight = 1
this%p(K)%eLeft = K
this%p(K)%eRight = NONE

!
RETURN

END SUBROUTINE ConstructMesh1D
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE GlobalTimeDerivative(this,t)
IMPLICIT NONE
TYPE(DGMesh) ,INTENT(INOUT) :: this
REAL(KIND=RP),INTENT(IN) :: t

! Local variables
REAL(KIND=RP),DIMENSION(this%e(1)%nEqn) :: QL_ext,QR_ext,F
REAL(KIND=RP) :: x_temp
INTEGER :: i,j,idL,idR,nEqn,N

!
N = this%dg%N
nEqn = this%e(1)%nEqn
DO j = 1,this%K

! Interpolate solution to the boundary
DO i = 1,nEqn

CALL InterpolateToBoundary(this%e(j)%Q(:,i),this%dg%l_at_minus_one, &
& this%e(j)%QL(i),N)

CALL InterpolateToBoundary(this%e(j)%Q(:,i),this%dg%l_at_one,this%e(j)%QR(i),N)
END DO! i

END DO! j
! Impose boundary conditions

j = this%p(0)%eRight
CALL AffineMap(-1.0_RP,this%e(j)%xR,this%e(j)%xL,x_temp)
CALL ExternalState(QL_ext,this%e(j)%QL,x_temp,t,LEFT,nEqn)
j = this%p(this%K)%eLeft
CALL AffineMap(1.0_RP,this%e(j)%xR,this%e(j)%xL,x_temp)
CALL ExternalState(QR_ext,this%e(j)%QR,x_temp,t,RIGHT,nEqn)
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! Solve the Riemann problem to get numerical flux at the interface
DO j = 0,this%K

idL = this%p(j)%eLeft
idR = this%p(j)%eRight
IF (idL .EQ. NONE) THEN

CALL RiemannSolver(QL_ext,this%e(idR)%QL,this%e(idR)%FstarL,-1,this%e(idR)%nEqn)
ELSE IF (idR .EQ. NONE) THEN

CALL RiemannSolver(this%e(idL)%QR,QR_ext,this%e(idL)%FstarR, 1,this%e(idL)%nEqn)
ELSE

CALL RiemannSolver(this%e(idL)%QR,this%e(idR)%QL,F,1,this%e(idR)%nEqn)
this%e(idR)%FstarL = -F
this%e(idL)%FstarR = F

END IF
END DO! j

! Compute the time derivative on each element
DO j = 1,this%K

CALL LocalTimeDerivative(this%e(j),this%dg)
END DO! j

!
RETURN

END SUBROUTINE GlobalTimeDerivative
!
!/////////////////////////////////////////////////////////////////////////
!

SUBROUTINE DestructDGMesh(this)
TYPE(DGMesh),INTENT(INOUT) :: this

! Local variables
INTEGER :: i

DO i = 1,this%K
CALL DestructDGElement(this%e(i))

END DO! i
CALL DestructNodalDGStorage(this%dg)
DEALLOCATE(this%e,this%p)
this%K = NONE
RETURN

END SUBROUTINE DestructDGMesh
!
END MODULE DGMeshClass

10.4 Output Solution to a File
There is no native plotter in Fortran. You cannot simply type plot to visualize the computed solution of a given
PDE. Instead you have to output the solution to a file and then use another piece of software to plot it. Somewhat
frustratingly, the format of the output files becomes important for the plotter. Different plotters can only read
certain types of files.

To visualize the computed solution we will focus on TecPlot type files, which use the extension .tec, and can
be plotted using the software VisIt. For convergence plots we will demonstrate how to use matplotlib, a package
for Python, for which we can use much simpler .dat files.

10.4.1 Plotting Routines for VisIt

We forgo pseudocode in this section and only provide working implementations procedures to output the solution
for plotting in proper TecPlot format. The routine assumes you provide a file associated with the INTEGER fUnit.
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Note that all these routines are designed to print a single component of the solution (e.g. the density ρ in the Euler
equations). It is possible to output multiple pieces of solution data into the same .tec file. We simply have to
provide appropriate labels for the data.

An important thing to remember in VisIt is that it has “smart” file grouping. What this means is, if you have
a series of files representing the solution at different times, say t = 0 to t = 1 with ∆t = 0.1, you have 11 files. If
you want to create a movie of the solution you simply name these files something like Movie00.tec to Movie11.tec
or rho00.tec to rho11.tec. VisIt automatically recognizes that the files have the same name and are ordered by
number. It then open the files simultaneously and allow you to play the movie of the solution. It is also very easy
to save movies so you can play them later at presentations, impressing everybody.

First, we show a one dimensional output routine for solution data. In this case we use the .curve proprietary
file extension. You pass the mesh x and solution u both of size N + 1. We use the pound sign, #, to name the
solution. It may be useful to name the curve N = 3,K = 128 to indicate the parameters of the computation. To
do this you include a #N=3,K=128 at the beginning of the file. We provide a one dimensional VisIt plot in Fig. 3.

Print 1D Solution to File
SUBROUTINE ExportToTecplot_1D(x,u,N,fUnit,exact)
! File writer for one dimensional solution vector

USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N,fUnit
REAL(KIND=RP),DIMENSION(0:N),INTENT(IN) :: x,u
REAL(KIND=RP),DIMENSION(0:N),INTENT(IN),OPTIONAL :: exact

! Local variables
INTEGER :: j

!
WRITE(fUnit,*)’#N=3,K=128’
DO j = 0,N

WRITE(fUnit,*)x(j),u(j)
END DO! j

! if the exact solution is available, output that as well
IF (PRESENT(exact)) THEN

WRITE(fUnit,*)’#exact’
DO j = 0,N

WRITE(fUnit,*)x(j),exact(j)
END DO! j

END IF
!

RETURN
END SUBROUTINE ExportToTecplot_1D
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Figure 3: Sine-shock interaction at T = 1.8.

Next we provide a two dimensional procedure to output the solution to a file. Again, we assume there is a file
name associated with the INTEGER fUnit. You pass the SUBROUTINE the points in each direction x and y and
the solution u each of size K×(N+1)×(N+1) where K is the number of quadrilateral elements. The CHARACTER
solutionFile lets you name the solution. For example solutionFile = ‘p’ for the pressure. The structure of the two
dimension .tec file is a little more complicated. Basically, you have to tell VisIt how the solution is sliced in
the x − y direction. This structure is automatically incorporated in the implementation provided. We provide an
example of a two dimensional VisIt plot in Fig. 4.

Print 2D Solution to File
SUBROUTINE ExportToTecplot_2D(x,y,u,N,K,fUnit,solutionFile)

USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N,K,fUnit
CHARACTER(LEN=*) ,INTENT(IN) :: solutionFile
REAL(KIND=RP),DIMENSION(K,0:N,0:N),INTENT(IN) :: x,y,u

! Local variables
INTEGER :: i,j,l

!
WRITE(fUnit,*)’TITLE = "’,solutionFile,’solution.tec"’
WRITE(fUnit,*)’VARIABLES = "x","y","’,solutionFile,’"’

!
DO l = 1,K

WRITE(fUnit,*)"ZONE I =",N+1,",J=",N+1,",F=POINT"
DO j = 0,N

DO i = 0,N
WRITE(fUnit,*)x(l,i,j),y(l,i,j),u(l,i,j)
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END DO! i
END DO! j

END DO! l
!

RETURN
END SUBROUTINE ExportToTecplot_2D

Figure 4: Pseudocolor and contour plot of reflection and transmission of the Dz component of TE Gaussian plane wave from a moving
dielectric interface. White or black borders indicate element boundaries.

An alternative implementation of the two dimensional procedure is provided. This version of the export routine
is taken from an implementation of the shallow water equations where the quantities of interest are water height
h and velocity components u, v in the x, y directions. However, it is written in a general enough fashion that this
routine can be adapted to another set of equations of interest.

Print 2D Solution to File (Multicomponent Version)
SUBROUTINE ExportAllToTecplot_2D(x,y,u,N,K,fUnit,solutionFile,nEqn)

USE Constants,ONLY: RP
IMPLICIT NONE

! here nEqn is the number of equations
INTEGER ,INTENT(IN) :: N,K,fUnit,nEqn
CHARACTER(LEN=*) ,INTENT(IN) :: solutionFile
REAL(KIND=RP),DIMENSION(K,0:N,0:N) ,INTENT(IN) :: x,y
REAL(KIND=RP),DIMENSION(K,0:N,0:N,nEqn),INTENT(IN) :: u

! Local variables
INTEGER :: i,j,l

!
WRITE(fUnit,*)’TITLE = "’,solutionFile,’solution.tec"’
WRITE(fUnit,*)’VARIABLES = "x","y","h","u","v"’

!
DO l = 1,K

WRITE(fUnit,*)"ZONE I =",N+1,",J=",N+1,",F=POINT"
DO j = 0,N

DO i = 0,N
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WRITE(fUnit,*)x(l,i,j),y(l,i,j),u(l,i,j,1),u(l,i,j,2),u(l,i,j,3)
END DO! i

END DO! j
END DO! l

!
RETURN

END SUBROUTINE ExportAllToTecplot_2D

Finally, we provide a three dimensional procedure to output the solution to a file. Again, fUnit indicates
the filename, The SUBROUTINE accepts the points in each direction x, y, z and the solution u each of size
K × (N + 1)× (N + 1)× (N + 1) where K is the number of hexahedral elements. The CHARACTER solutionFile
lets you name the solution. This output function assumes the approximation is of the same order, N + 1, in each
direction. We provide an example of a three dimensional VisIt plot in Fig. 5. We format the output of the 3D
data to print four real numbers with thirteen digits, five of which are after the decimal point.

Print 3D Solution to File
SUBROUTINE ExportToTecplot_3D(x,y,z,u,N,K,fUnit,solutionFile)

USE Constants,ONLY: RP
IMPLICIT NONE
INTEGER ,INTENT(IN) :: N,K,fUnit
CHARACTER(LEN=*) ,INTENT(IN) :: solutionFile
REAL(KIND=RP),DIMENSION(1:K,0:N,0:N,0:N),INTENT(IN) :: x,y,z,u

! Local variables
INTEGER :: i,j,h,p
CHARACTER(LEN=32) :: valuesFMT

! Format the output of real numbers
valuesFMT = "(4E13.5)"

!
WRITE(fUnit,*)’TITLE = "’,solutionFile,’solution.tec"’
WRITE(fUnit,*)’VARIABLES = "x","y","z","’,solutionFile,’"’

!
DO h = 1,K

WRITE(fUnit,*)"ZONE I =",N+1,",J=",N+1,",K=",N+1,",F=POINT"
DO i = 0,N

DO j = 0,N
DO p = 0,N

WRITE(fUnit,valuesFMT)x(h,i,j,p),y(h,i,j,p),z(h,i,j,p),u(h,i,j,p)
END DO! p

END DO! i
END DO! j

END DO! h
!

RETURN
END SUBROUTINE ExportToTecplot_3D

10.4.2 Plotting Routines for matplotlib

We use matplotlib to create convergence plots. The reason is that matplatlib is a little more general, and we
don’t need any special format for the data finals. So, for example, all you need to create a spectral convergence plot
is a list of the polynomial order N and the error (I usually use the L∞ error because it is easy to calculate). We only
need a few Python commands to create these plots. Again, we simply provide implementations that demonstrate
how to use matplotlib. Note that in python the # symbol is the comment command. One nice feature is that
matplotlib can load LATEX packages such that you can put mathematical symbols in axis labels and figure legends.
Also, this means that the fonts used in a figure will match the fonts of the larger LATEX document, which is a nice
consistency.
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Figure 5: Pseudocolor plot of propagation of a pressure wave across a 3D moving mesh. Black lines indicate element boundaries.

First, we’ll create a semilog spectral convergence plot. This demonstrates the exponential convergence of the
DGSEM approximation. All we need to assume is that we have a file specConv.dat which contains the polynomial
order and error information. The Python code to create the plot is given below. We show the resulting convergence
plot in Fig. 6.

Spectral Convergence Plot
#!/usr/bin/env python

from math import log10
import matplotlib
matplotlib.use(’Agg’)
from matplotlib import rc
from numpy import *
from matplotlib.pyplot import *

rc(’text’, usetex=True)
rc(’font’, family=’serif’)
rc(’font’, size=10)
matplotlib.rcParams[’text.latex.preamble’]=[r"\usepackage{amsmath}"]

fig = figure(1, figsize=(5,5))
ax = fig.add_subplot(111)
xlabel(’$N$’,fontsize=14)
ylabel(r’$L_{\infty}$ Error’,fontsize=14)
ax.xaxis.set_minor_locator( MultipleLocator(1) )
ax.yaxis.set_minor_locator( MultipleLocator(1) )
ax.axhline(color="black")
ax.axvline(color="black")

data = loadtxt(’specConv.dat’)
error1 = array([[data[i][0],data[i][1]] for i in range(len(data))])
error2 = array([[data[i][0],data[i][2]] for i in range(len(data))])
ax.plot(error1[:,0], error1[:,1],’*-’,markersize=7,label=’$\Delta t = 1/2000$’)
ax.plot(error1[:,0], error2[:,1],’o-’,markersize=5,label=’$\Delta t = 1/4000$’)
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semilogy()
axis([3,17,5e-9,2e-2])

legend = ax.legend(numpoints=1,loc=’upper right’)
setp(legend.get_texts(), fontsize=10)

tight_layout(1)

savefig(’specConv.pdf’)
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Figure 6: Semilog plot displays spectral convergence.

We also give an example of code to create a log-log time convergence plot. We add a triangle to indicate the
slope of the line which conveniently shows the correct temporal order. We assume that there is a file containing the
temporal error timeConv.dat. We present the example of the log-log temporal convergence plot in Fig. 7.

Temporal Convergence Plot
#!/usr/bin/env python

from math import log10
import matplotlib
matplotlib.use(’Agg’)
from matplotlib import rc
from numpy import *
from matplotlib.pyplot import *

rc(’text’, usetex=True)
rc(’font’, family=’serif’)
rc(’font’, size=10)
matplotlib.rcParams[’text.latex.preamble’]=[r"\usepackage{amsmath}"]

fig = figure(1, figsize=(5,5))
ax = fig.add_subplot(111)
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xlabel(r’$\log_{10}(\Delta t)$’,fontsize=14)
ylabel(r’$\log_{10}(L_{\infty}\textrm{ Error})$’,fontsize=14)
ax.axhline(color="black")
ax.axvline(color="black")

triangle_points = [[(-3.098),(-6.175)],[(-3.098),(-6.55)],[(-3.222),(-6.55)]]
triangle = Polygon(triangle_points,fill=False)
x_mid = (triangle_points[2][0] + triangle_points[0][0])/2.0
y_mid = ((triangle_points[0][1] + triangle_points[1][1])/2.0)
vertical_label_pos = (triangle_points[0][0],y_mid)
horizontal_label_pos = (x_mid,triangle_points[1][1])
ax.add_patch(triangle)
ax.annotate(’$3$’,xy=vertical_label_pos,xytext=(+5,-1.5),textcoords=’offset points’,

ha=’center’,va=’center’)
ax.annotate(’$1$’,xy=horizontal_label_pos,xytext=(0,-5),textcoords=’offset points’,

ha=’center’,va=’center’)

data = loadtxt(’timeConv.dat’)
error1 = array([[data[i][2],data[i][3]] for i in range(len(data))])
ax.plot(error1[:,0], error1[:,1],’o-’,markersize=5)
axis([(-3.31),(-3),(-6.6),(-6.09)])

tight_layout(1)

savefig(’timeConv.pdf’)
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Figure 7: Loglog plot of the temporal convergence. We see the correct convergence rate for third order Runge-Kutta.
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Chapter 11: Source Code Management with git
Now that we know how to write and organize computer programs in Fortran, which are possibly object oriented,
a practical question arises. How do we keep track of alterations to our source code? Is it possible to rewind to a
previously known working version of a program? The answer to both of these questions is yes, through a source code
management tool. We will cover a commonplace and popular tool known as git, but other options are avaiable like
CVS, SVN, or Mercurial. All of the options for source code management require a bit of background knowledge, but
once we know a few basic commands we can save ourselves a lot time and/or heartache as we change programming
projects.

What is the purpose of managing source code? A short answer is it let’s us edit and alter working source code
without fear. We can always rewind a project to a previous working version if our edits “break” the source code,
i.e., edits to a master version of the code may cause the program not to compile or could introduce bug(s). A
longer answer is that source code management offers a structured way to organize and document changes we make
to our programming projects. Also, source code management tools assist in the creation of large, collaborative
programming projects. We can have several people working independently on a shared master version of the source
code. In all these ways a code management tool makes a groups source code easier to read and we can explain what
changes were made to the code and when.

This is a quick introduction to the basic functionality of git. To learn about the more advanced git commands
and structures there is always Google. However, so you don’t have to wade through a bunch of search results. A
thorough, free book that outlines git’s functionality is located at

www.git-tower.com/learn/ebook/command-line/

The source code tool git comes preinstalled on Mac devices. To install git on a Linux system you can use the
command

sudo apt-get install git

and on Windows follow the instructions on the following webpage

http://msysgit.github.io

Source code management through git will introduce a repository of (hidden) files. To construct a repository
we point the terminal to the file containing our source files and type the command

git init

The first thing you should do you after git is installed is set your user name and e-mail address. This is important
because every git commit uses this information, and it’s immutably baked into the commits you pass around. This
is especially important in remote repositories to keep track of who has made what changes to pieces of code.

git config --global user.name "Inigo Montoya"
git config --global user.email inigo.montoya@example.se

You can change other settings as well using the config option. You can always check your git settings for a certain
repository with the command

git config --list
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Another important preliminary part of the git repository is creating a .gitignore file. In this file, you can
tell the repository to ignore certain files that it should not concern itself with tracking changes. Example of such
files would be compiled code files like those with the .o or .mod extensions. Also, you will not track changes to
output files like those with a .tec extension. This is because these files all change frequently when recompiling or
running the code and tracking them does not make sense, particularly for a collaborative coding project. Once we
are inside the folder that contains the git repository we create a .gitignore file with

touch .gitignore

Note that the file name .gitignore is case sensitive and the name of the file matters. The git repository looks
for a file with this specific name and will not stage or commit files that it is told to ignore. The .gitignore is a
hidden file that can easily be edited in the terminal using programs like pico, nano, or vim. Here is an example of
the possible .gitignore contents

Example .gitignore
# Add any directories or files you don’t want to be tracked by git version control

# Ignore any files with these extensions
*.o
*.mod
*.tec

# Ignore an entire folder (always append a slash)
plotFiles/

Now that we have a repository we can add source files to it using

git add fileName

However, once we add a file we have not committed the changes into the repository. We have simply told git to
stage the file and have it ready to commit. Next we tell git to commit changes for a given file using the command

git commit fileName

If we want to commit all files that have been changed (without even adding them) we can use the blanket command

git commit -a

This command will prompt for a comment to be added, which can be added in a pico type environment. To add
the comment at the command line we can use the -m command,

git commit -a -m "Commit message"

We can experiment will new source code by introducing branches. A branch allows us to keep multiple copies
of the source code in the repository. The command

git branch -b ’experimental’

will create a new branch off of the “master” containing new source code. If we mess things up too much on the
experimental branch we can rewind to an earlier committed version (or to the “master” branch). If we type

git branch
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it will tell us which branch we are on. With the git checkout [branch name] command we can move between
branches of the repository.

Once we are sure that the code on an ‘experimental’ branch is debugged how do we add it back to the main
branch of source code? This is accomplished through the merge command. You can merge any branch into your
current branch with the git merge command. To include changes on the “experimental” branch on the “master”
branch, you can merge in the “experimental” branch.

git merge experimental

This may cause conflicts, which git will identify, that the user must resolve. Once any conflict issues are resolved
the user must add the offending files once again and the commit like before.

If we really mess up the source code on an experimental branch we can rewind to a previous version. To do
so we will reassign where the head ($HEAD) of the git repository points. This can also undo an unwise merge
that was made from another branch. This includes the commands git revert and git reset. The difference is
revert goes back to a previous version, but keeps a copy. While reset will erase earlier versions on the branch.
For example, if we want to rewind to a previous version of code and discard all changes we say

git checkout master
git reset --hard [previous working version]

There are many other command and subtleties to using git, a Google search will reveal as much. But this will
get you started with using local repositories.

11.1 Remote Repositories
It is common for a research group to collaborate on a large coding project. As such, the group needs a convenient
way to manipulate code, keep track of changes and versions, all while identifying who made certain changes to the
source code. This can be achieved using a remote repository. There are many freely available hosting websites
to handle a remote git repository. Some popular ones are

• http://www.github.com: Freely create public repositories that anyone can access. Also offers some docu-
mentation capabilities for the source code. Example found at http://github.com/project-fluxo/fluxo.

• http://www.gitlab.com: Freely create private repositories for your workgroup to branch and experiment.
Tied to github so it is easy to merge into the public repository and “go live” with source code updates.

• http://www.bitbucket.org: Can create private or public repositories. For small groups/projects (5 people
or fewer) it is free. For larger groups and more storage space there is a monthly fee.

You can think of the remote repository as a “Master” copy of the source code for the research group. Each
member of the group still has a local repository of files that they work with. But committed changes to the code
must be pushed to (and pulled from) the remote repository to maintain the latest versions. Much of the functionality
of git for remote repositories remains the same as it was for a local repository, but for a couple added steps.

First, to initialize a local copy of the remote repository we must make a clone. There are different protocols
that can be used to copy the remote repository. We provide an example using the SSH transfer protocol (as it is
fairly common)

git clone user@server:/origin.git

We can manage our remote repositories using the remote command. To see which remote servers you have config-
ured, you can run the git remote command. It lists the short names of each remote handle you havve specified.
If you havve cloned your repository, you should at least see origin.

Once we have a clone of the repository locally, we operate on and edit files in the same way as we described
earlier. We still stage and commit changes to the local repository. But how do we send any of the committed
changes back to the remote repository? For this we use the push command. In general, you push the changes of
whatever branch you are working onto a branch in the remote repository. The general command is
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git push [alias] [branch]

where alias identifies the name of the remote repository and branch identifies which branch to push onto. So, for
example, we can push changes onto the master branch

git push origin master

Pretty easy. This will automatically merge your committed changes into the master branch. Now if someone clones
that repository they will receive your newly pushed master branch. However, it is possible to just push your branch
into the repository and a merge can take place later. Instead, we can push a branch you’ve committed, let’s call it
palm, into the remote repository using

git push origin palm

Now when people clone or fetch from that repository, they will see a “palm” branch as well.
What about getting the newest files from the remote repository? We have two, slightly different options to

achieve this there is the fetch command or the pull command. The difference is subtle. If we use the commend

git fetch origin [branch]

we will download new branches and data from a remote repository, but this command does not merge any
changes. The new files will show bookmarks to where each branch was on the remote repository when you
synchronized, but it is up to you to inspect the new changes and merge them into your local repository. In contrast,
if we used the command

git pull origin [branch]

we will effectively run a fetch command immediately followed by a merge command of the branch on the remote
repository that is tracked by the branch we are currently working on.

Either option for obtaining the newest data from the remote repository will work, and it boils down to personal
preference. The pull command is quick and easy, but you relinquish some control over how the merges to your
branches occur. Some people find this “magic” updating off-putting. Using fetch and then performing the merges
yourself can be tedious and time consuming, but it has the advantage that you know exactly what merges are being
made and what changes occur in your local repository.

The last major issue you can run into with the remote repository is pushing to remote branches where someone
else has pushed changes in the meantime. As an example let’s consider two developers, named Luke and Leia, who
are working from the remote repository Hoth. If Luke and Leia clone the repository at the same time, both do
commits, but then she pushes and then Luke tries to push, git will, by default, not allow Luke to overwrite Leia’s
changes. What happens when Luke’s push is initiated is the remote repository, basically, runs git log on the
branch Luke tries to push in order to make sure that the repository can see the current tip of the server’s branch
in Luke’s push history. If the current tip on the server is missing in Luke’s history, it concludes that Luke is out of
date and rejects his push. What Luke must do is first fetch and merge the changes made by Leia’s push. Then
Luke can push again, though laborious this process makes sure Luke takes all of Leia’s changes to the project into
account.

Always remember that anytime you merge changes into a branch there may be conflicts you need to resolve in
your local repository. It can frustrating when you first start using git or any other source code management tool
since there is a little bit of a learning curve. However, once you get used to it, source code management becomes
indispensable in keeping a stable, working version of a large coding project (whether it is just you or a collaborative
effort).

As a closing statement on source code management. This is a coding practice not specific to Fortran!
The git utility simply offers a systematic tool to track changes made to files or documents over time. Due to the
prevalence and availability of online hosting, remote git repositories offer easy dissemination of project files across
a workgroup. The focus of this Chapter was to discuss git in the context of Fortran, but we can just as easily use
git if we are collaborating on a coding project in C++, CUDA or even a LATEX document.
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