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Background

Assume y = Hx + v where x is the true state and v is zero-
mean random noise. In classical linear estimation an esti-
mate X is calculated linearly from y with R = cov(y), i.e.,

x = Ky, P = cov(Xx) = cov(Ky) = KRK".

In conservative linear estimation it is only known that R € K
where R is a set of positive definite matrices. R being only
partly known is typically due to the fact that the cross-
covariance R, of
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is unknown. One way to handle R € K is to use the conserva-
tive linear unbiased estimator (CLUE), which is defined below.

Conservative Linear Unbiased Estimator

Given is y = Hx + v, where x is the true state and v is
zero-mean random noise. An estimator on the linear form
X = Ky, reporting an error covariance P of X, is called a
conservative linear unbiased estimator if EX = x and

P > cov(x),

where cov(X) is the true covariance of x = K.

Best CLUL

Inspired by the best linear unbiased estimator (BLUE), which
is the optimal linear unbiased estimator given y and R are
fully known, we here want to find the best CLUE. The best
CLUE is given by the following optimization problem

K, P =argmin P
K,P
subject to EKy = EK(Hx+v) =x (1)

P > KR'’KT,VR’ € R,

where EKy = x resembles the linear unbiased constraint. The
operation argmin P above means minimizing the target P in
the positive semi-definite sense.
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Estimation Under Unknown R,

To illustrate the CLUE concept and the effect of neglecting
the cross-covariance, consider the following scenario: Let
H = [11]" and y = [y] yI]" where the covariances of y; and
y,, and the cross-covariance are respectively given by
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The covariances from different estimators are given in the
the illustration below. It is important to distinguish between
the covariance calculated by an estimator (e.g., P¥) and the
true covariance (e.g., cov(KVy)), where the latter depends on
the chosen gain (e.g., K¥). The estimators are defined at the
bottom of the page®’.

Figure: PN underestimates cov(KYy) and hence is non-conservative. P over-
estimates cov(Ky) and therefore is

Considered Estimators

Unknown Rj,: A naive estimator assuming R;, = 0 such that
R’ = [1},1 1?2} and

K~ = (H'(R’)"'H) H'(R))",

P¥=K'R'(K")"= (R;' +R}").

Known R;,: A WLS estimator with R = {Ilffz 11{{22} and
K" = (H'R"'H)  H'R",

PWLs — KWLSR(KWLS)T _ (HTR—lH)—l .

Unknown R;,: An estimator with R = [21(}1 21({2} and

K=(HR'H) HR,

P=KRK" = (HR'H) .

1A1l these estimators are linear and unbiased.
PWLS: Weighted least squares.

Restricted Best CLUL

Finding a best CLUE, i.e., solving (1) is generally compli-
cated, if not impossible. The problem can be simplified by
restricting the problem as follows, which gives a CLUE that
is optimal under certain restrictions.

Restricted Best CLUE

Introduce the set R which contains all R for which R >
R,VR’ € R is satisfied, and restrict P to be calculated as
P = KRKT, for some gain K and upper bound R. The op-
timization problem then breaks down to:

Find the minimum element of R, i.e., R* = min R which
is the R* that satisfies R > R* VR € R.

Optimize the gain K* given R".

However, finding R* might still be complicated. Consider
the following 2 x 2 matrix R € K where the off-diagonal en-
tries are unavailable. K is contained in the rectangle of the
illustration below:

Figure: Each matrix R € R satisfy R > R’,YR’ € R. Finding the minimum R
is not possible which can be concluded by looking a those R that tightly en-

closes the rectangle (where all R" € K reside) by intersecting the four corners
of the rectangle. None of these R will fulfill R’ > R,VR’ € K.

Possible Resolutions

Solve R* = ming.i J(R) where J(-) is a loss function.
Divide the R € R into different families according to the
o

parametrization 0 they belong to, e.g., R(0) = { X } .
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