Conservative Linear Unbiased Estimator (CLUE)

Robin Forsling, Zoran Sjanic, Fredrik Gustafsson and Gustaf Hendeby (firstname.lastname@liu.se)

Background

Assume $\mathbf{y}=\mathbf{H x}+\mathbf{v}$ where \mathbf{x} is the true state and \mathbf{v} is zeromean random noise. In classical linear estimation an estimate $\hat{\mathbf{x}}$ is calculated linearly from \mathbf{y} with $\mathbf{R}=\operatorname{cov}(\mathbf{y})$, i.e.,

$$
\hat{\mathbf{x}}=\mathbf{K y}, \quad \mathbf{P}=\operatorname{cov}(\hat{\mathbf{x}})=\operatorname{cov}(\mathbf{K y})=\mathbf{K R K}^{\top} .
$$

In conservative linear estimation it is only known that $\mathbf{R} \in \mathcal{R}$ where \mathfrak{R} is a set of positive definite matrices. \mathbf{R} being only partly known is typically due to the fact that the crosscovariance \mathbf{R}_{12} of

$$
\mathbf{R}=\left[\begin{array}{cc}
\mathbf{R}_{1} & \mathbf{R}_{12} \\
\mathbf{R}_{12}^{\top} & \mathbf{R}_{2}
\end{array}\right]
$$

is unknown. One way to handle $\mathbf{R} \in \mathcal{R}$ is to use the conservative linear unbiased estimator (CLUE), which is defined below.

Conservative Linear Unbiased Estimator

 Given is $\mathbf{y}=\mathbf{H x}+\mathbf{v}$, where \mathbf{x} is the true state and \mathbf{v} is zero-mean random noise. An estimator on the linear form $\hat{\mathbf{x}}=\mathbf{K y}$, reporting an error covariance \mathbf{P} of $\hat{\mathbf{x}}$, is called a conservative linear unbiased estimator if $\mathrm{E} \hat{\mathbf{x}}=\mathbf{x}$ and$$
\mathbf{P} \succeq \operatorname{cov}(\hat{\mathbf{x}})
$$

where $\operatorname{cov}(\hat{\mathbf{x}})$ is the true covariance of $\hat{\mathbf{x}}=\mathbf{K y}$.

Best CLUE

Inspired by the best linear unbiased estimator (BLUE), which is the optimal linear unbiased estimator given \mathbf{y} and \mathbf{R} are fully known, we here want to find the best CLUE. The best CLUE is given by the following optimization problem

$$
\begin{align*}
\mathbf{K}^{*}, \mathbf{P}^{*}=\underset{\mathbf{K}, \mathbf{P}}{\arg \min } & \mathbf{P} \\
\text { subject to } & \mathrm{EK}=\mathrm{E} \mathbf{K}(\mathbf{H} \mathbf{x}+\mathbf{v})=\mathbf{x} \tag{1}\\
& \mathbf{P} \geq \mathbf{K} \mathbf{R}^{\prime} \mathbf{K}^{\top}, \forall \mathbf{R}^{\prime} \in \mathfrak{R},
\end{align*}
$$

where $E K \mathbf{K}=\mathbf{x}$ resembles the linear unbiased constraint. The operation $\arg \min \mathbf{P}$ above means minimizing the target \mathbf{P} in the positive semi-definite sense.

Estimation Under Unknown \mathbf{R}_{12}

To illustrate the CLUE concept and the effect of neglecting the cross-covariance, consider the following scenario: Let $\mathbf{H}=\left[\begin{array}{ll}1 I\end{array}\right]^{\top}$ and $\mathbf{y}=\left[y_{1}^{\top} \mathbf{y}_{2}^{\top}\right]^{\top}$ where the covariances of \mathbf{y}_{1} and \mathbf{y}_{2}, and the cross-covariance are respectively given by

$$
\mathbf{R}_{1}=\left[\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right], \quad \mathbf{R}_{2}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 4
\end{array}\right], \quad \mathbf{R}_{12}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

The covariances from different estimators are given in the the illustration below. It is important to distinguish between the covariance calculated by an estimator (e.g., \mathbf{P}^{N}) and the true covariance (e.g., $\operatorname{cov}\left(\mathbf{K}^{\mathrm{N}} \mathbf{y}\right)$), where the latter depends on the chosen gain (e.g., \mathbf{K}^{N}). The estimators are defined at the bottom of the page ${ }^{a b}$.

Figure: \mathbf{P}^{N} underestimates $\operatorname{cov}\left(\mathbf{K}^{\mathrm{N}} \mathbf{y}\right)$ and hence is non-conservative. $\overline{\mathbf{P}}$ overestimates $\operatorname{cov}(\overline{\mathbf{K}} \mathbf{y})$ and therefore is conservative.

Considered Estimators

- Unknown \mathbf{R}_{12} : A naïve estimator assuming $\mathbf{R}_{12}=\mathbf{0}$ such that $\mathbf{R}^{\prime}=\left[\begin{array}{cc}\mathbf{R}_{1} & 0 \\ 0 & \mathbf{R}_{2}\end{array}\right]$ and

$$
\begin{aligned}
\mathbf{K}^{\mathbb{N}} & =\left(\mathbf{H}^{\top}\left(\mathbf{R}^{\prime}\right)^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{\top}\left(\mathbf{R}^{\prime}\right)^{-1}, \\
\mathbf{P}^{\mathrm{N}} & =\mathbf{K}^{\mathrm{N}} \mathbf{R}^{\prime}\left(\mathbf{K}^{\mathrm{N}}\right)^{\top}=\left(\mathbf{R}_{1}^{-1}+\mathbf{R}_{2}^{-1}\right) .
\end{aligned}
$$

- Known \mathbf{R}_{12} : A WLS estimator with $\mathbf{R}=\left[\begin{array}{ll}\mathbf{R}_{1} & \mathbf{R}_{12} \\ \mathbf{R}_{12} & \mathbf{R}_{2}\end{array}\right]$ and

$$
\begin{aligned}
\mathbf{K}^{\mathrm{WLS}} & =\left(\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{R}^{-1}, \\
\mathbf{P}^{\mathrm{WLS}} & =\mathbf{K}^{\mathrm{WLS}} \mathbf{R}\left(\mathbf{K}^{\mathrm{WLS}}\right)^{\top}=\left(\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} .
\end{aligned}
$$

- Unknown \mathbf{R}_{12} : An estimator with $\overline{\mathbf{R}}=\left[\begin{array}{cc}2 \mathbf{R}_{1} & 0 \\ 0 & 2 \mathbf{R}_{2}\end{array}\right]$ and

$$
\begin{aligned}
& \overline{\mathbf{K}}=\left(\mathbf{H}^{\top} \overline{\mathbf{R}}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \overline{\mathbf{R}}^{-1}, \\
& \overline{\mathbf{P}}=\overline{\mathbf{K}} \overline{\mathbf{R}} \overline{\mathbf{K}}^{\top}=\left(\mathbf{H}^{\top} \overline{\mathbf{R}}^{-1} \mathbf{H}\right)^{-1}
\end{aligned}
$$

${ }^{a}$ All these estimators are linear and unbiased
${ }^{b}$ WLS: Weighted least squares.

Restricted Best CLUE

Finding a best CLUE, i.e., solving (1) is generally complicated, if not impossible. The problem can be simplified by restricting the problem as follows, which gives a CLUE that is optimal under certain restrictions.

Restricted Best CLUE

Introduce the set $\overline{\mathfrak{R}}$ which contains all $\overline{\mathbf{R}}$ for which $\overline{\mathbf{R}} \geq$ $\mathbf{R}, \forall \mathbf{R}^{\prime} \in \mathbb{R}$ is satisfied, and restrict \mathbf{P} to be calculated as $\mathbf{P}=\mathbf{K} \overline{\mathbf{R}} \mathbf{K}^{\boldsymbol{T}}$, for some gain \mathbf{K} and upper bound $\overline{\mathbf{R}}$. The optimization problem then breaks down to:

- Find the minimum element of $\overline{\mathbf{R}}$, i.e., $\overline{\mathbf{R}}^{*}=\min \overline{\mathfrak{R}}$ which is the $\overline{\mathbf{R}}^{*}$ that satisfies $\overline{\mathbf{R}} \geq \overline{\mathbf{R}}^{*}, \forall \overline{\mathbf{R}} \in \overline{\mathbf{R}}$.
- Optimize the gain \mathbf{K}^{*} given $\overline{\mathbf{R}}^{*}$.

However, finding $\overline{\mathbf{R}}^{*}$ might still be complicated. Consider the following 2×2 matrix $\mathbf{R} \in \mathbb{R}$ where the off-diagonal entries are unavailable. \mathcal{R} is contained in the rectangle of the illustration below:

Figure: Each matrix $\overline{\mathbf{R}} \in \overline{\mathbf{R}}$ satisfy $\overline{\mathbf{R}} \geq \mathbf{R}^{\prime}, \forall \mathbf{R}^{\prime} \in \mathfrak{R}$. Finding the minimum $\overline{\mathbf{R}}$ is not possible which can be concluded by looking a those $\overline{\mathbf{R}}$ that tightly encloses the rectangle (where all $\mathbf{R}^{\prime} \in \mathfrak{R}$ reside) by intersecting the four corners of the rectangle. None of these $\overline{\mathbf{R}}$ will fulfill $\overline{\mathbf{R}}^{\prime} \geq \overline{\mathbf{R}}, \forall \overline{\mathbf{R}}^{\prime} \in \overline{\mathcal{R}}$.

Possible Resolutions

- Solve $\overline{\mathbf{R}}^{*}=\min _{\overline{\mathbf{R}} \in \overline{\mathfrak{R}}} J(\overline{\mathbf{R}})$ where $J(\cdot)$ is a loss function.
- Divide the $\overline{\mathbf{R}} \in \overline{\mathfrak{R}}$ into different families according to the parametrization θ they belong to, e.g., $\overline{\mathbf{R}}(\theta)=\left[\begin{array}{cc}\frac{a}{\theta} & 0 \\ 0 & \frac{b}{1-\theta}\end{array}\right]$.

LINKÖPING UNIVERSITY Division of Automatic Control

