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Background

Assume y = Hx + v where x is the true state and v is zero-
mean random noise. In classical linear estimation an esti-
mate x̂ is calculated linearly from y with R = cov(y), i.e.,

x̂ = Ky, P = cov(x̂) = cov(Ky) = KRKᵀ.

In conservative linear estimation it is only known that R ∈R
where R is a set of positive definite matrices. R being only
partly known is typically due to the fact that the cross-
covariance R12 of

R =
[
R1 R12

Rᵀ
12 R2

]
,

is unknown. One way to handle R ∈R is to use the conserva-
tive linear unbiased estimator (CLUE), which is defined below.

Conservative Linear Unbiased Estimator
Given is y = Hx + v, where x is the true state and v is
zero-mean random noise. An estimator on the linear form
x̂ = Ky, reporting an error covariance P of x̂, is called a
conservative linear unbiased estimator if E x̂ = x and

P � cov(x̂),

where cov(x̂) is the true covariance of x̂ = Ky.

Best CLUE
Inspired by the best linear unbiased estimator (BLUE), which
is the optimal linear unbiased estimator given y and R are
fully known, we here want to find the best CLUE. The best
CLUE is given by the following optimization problem

K∗,P∗ = argmin
K,P

P

subject to EKy = EK(Hx+ v) = x
P �KR′Kᵀ,∀R′ ∈R,

(1)

where EKy = x resembles the linear unbiased constraint. The
operation argminP above means minimizing the target P in
the positive semi-definite sense.

Estimation Under Unknown R12
To illustrate the CLUE concept and the effect of neglecting
the cross-covariance, consider the following scenario: Let
H = [ I I ]ᵀ and y = [yᵀ1 yᵀ2 ]ᵀ where the covariances of y1 and
y2, and the cross-covariance are respectively given by

R1 =
[

4 1
1 2

]
, R2 =

[
2 −1
−1 4

]
, R12 =

[
2 0
0 2

]
.

The covariances from different estimators are given in the
the illustration below. It is important to distinguish between
the covariance calculated by an estimator (e.g., Pn) and the
true covariance (e.g., cov(Kny)), where the latter depends on
the chosen gain (e.g., Kn). The estimators are defined at the
bottom of the pageab.
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Figure: Pn underestimates cov(Kny) and hence is non-conservative. P̄ over-
estimates cov(K̄y) and therefore is conservative.

Considered Estimators
• Unknown R12: A naïve estimator assuming R12 = 0 such that
R′ =

[R1 0
0 R2

]
and

Kn =
(
Hᵀ(R′)−1H

)−1
Hᵀ(R′)−1,

Pn = KnR′(Kn)ᵀ =
(
R−1

1 +R−1
2

)
.

• Known R12: A WLS estimator with R =
[

R1 R12
Rᵀ

12 R2

]
and

Kwls =
(
HᵀR−1H

)−1
HᵀR−1,

Pwls = KwlsR(Kwls)ᵀ =
(
HᵀR−1H

)−1
.

• Unknown R12: An estimator with R̄ =
[2R1 0

0 2R2

]
and

K̄ =
(
HᵀR̄−1H

)−1
HᵀR̄−1,

P̄ = K̄R̄K̄ᵀ =
(
HᵀR̄−1H

)−1
.

aAll these estimators are linear and unbiased.
b
WLS: Weighted least squares.

Restricted Best CLUE
Finding a best CLUE, i.e., solving (1) is generally compli-
cated, if not impossible. The problem can be simplified by
restricting the problem as follows, which gives a CLUE that
is optimal under certain restrictions.

Restricted Best CLUE
Introduce the set R̄ which contains all R̄ for which R̄ �
R,∀R′ ∈ R is satisfied, and restrict P to be calculated as
P = KR̄Kᵀ, for some gain K and upper bound R̄. The op-
timization problem then breaks down to:

• Find the minimum element of R̄, i.e., R̄∗ = minR̄ which
is the R̄∗ that satisfies R̄ � R̄∗,∀R̄ ∈ R̄.

• Optimize the gain K∗ given R̄∗.

However, finding R̄∗ might still be complicated. Consider
the following 2 × 2 matrix R ∈ R where the off-diagonal en-
tries are unavailable. R is contained in the rectangle of the
illustration below:

R̄

R

R̄

Figure: Each matrix R̄ ∈ R̄ satisfy R̄ � R′,∀R′ ∈ R. Finding the minimum R̄

is not possible which can be concluded by looking a those R̄ that tightly en-
closes the rectangle (where all R′ ∈ R reside) by intersecting the four corners
of the rectangle. None of these R̄ will fulfill R̄′ � R̄,∀R̄′ ∈ R̄.

Possible Resolutions
• Solve R̄∗ = minR̄∈R̄ J(R̄) where J(·) is a loss function.

• Divide the R̄ ∈ R̄ into different families according to the
parametrization θ they belong to, e.g., R̄(θ) =

[ a
θ 0
0 b

1−θ

]
.
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