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Problem Formulation

Data Association (DA) in this work is defined as

. Assigning a set of measurements of landmarks at time ¢,
— {y/}™, yi € R%, to the correct landmarks, I = {I7}"
ZJ R
- Finding a correspondence variable at time ¢, C;, = {c/}""
¢! € N, such that ¢/ = i if y/ is originating from ¥/

g=1’

=1

This problem can be solved by defining a fitness function,
f(Cy,Y;, L, 60,), and finding the best fit as in
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where 0, are possible extra parameters and C is the constraint
set for the cerrespondence.

Data Association Example

5landmarks, L = {I’}>_,, 2 measurements, Y; = {y;},_,
Landmarks number 3 and 5 are measured by the mea-
surements number 2 and 1, respectively.

The correct correspondence is then ¢} = 0, ¢ = 0, ¢} =
2, ¢; =0, ¢ =1 or more compactly C; = {0, 0, 2, 0, 1}.

Particle filter is chosen as an algorithm to solve the DA prob-
lem.

Particle Filter Algorithm

Input: Prior p(xy), Transition distribution p(x;|z; 1), Likelihood
p(Y:|x:), Proposal distribution 7 (x|xp:_1, Yi4), Y17

Output: {p(z:|Y1,)},

Initialize:

zh ~ p(z), wh=+,1=1: N

fort=1toT

1. 2t ~ 77(51375|336t ., Y14),1=1: N (Proposal Sampling)

2. W = wt i pilrpllvi) (Weights Update)

(xtith nen

3. w! = Z o~ (Welghts Normalization)

4. (x| Yig) = zjV wid(z! — x;) (Posterior Estimate)
5. Draw N particles from {z'}:, with the probability

proportional to their respective weight and set w; = %
1=1: N
endfor
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Data Association Particle Filter (DAPF)

Implemetation boils down to a choice of the three (colored)
ditributions.

No exact form exist in the case of data association, but well
motivated approximations are used. In this case the transi-
tion and proposal densities can be chosen to be the same.

Transition/Proposal Density

Decide which landmarks to use giving the set L: Cc {1,..., N;}:
po(L(c)ll(c]_y) = Po™ (1 = Po) 71
pI(E)I(e]_) = Py (1 = Pyl

I 1s the indicator function
Uniform proposal

¢ ~U(l,my), j € Ly
Non-uniform proposal

& o pp(clIYi Ly, 0)) = e~ —h0) i —hio,0)
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Example of non-uniform proposal distribution

Likelihood

p(Yi?iCta L7 9?5)
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Example of likelihood

Results

The method is evaluated in a 2D simulation environment
with 30 landmarks and compared to the Nearest Neighbor.
100 MC simulation are used for each number of particles
N € {500, 1000, 2000, 4000, 8000} and average association
error 1s evaluated.

Average association error (Particle Filter and Deterministic)
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Conclusions & Future Work

Performance is evaluated for two different proposal dis-
tributions on a small 2D simulation example and com-

pared to NN

DAPF with non-uniform proposal has the best perfor-
mance, but with a increased computational cost

More thorough performance investigation as well as ap-
plication on real data are the next steps
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