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Motivation
Reinforcement Learning (RL) studies Learning approaches

for model-free optimal control of dynamical systems. Two

basic assumptions in RL are

• The system dimension is fully known.

• All states are measurable.

We aim to relax these two assumptions.

Problem Formulation
We consider uncertain Partially Linear Systems

• Uncertain linear system

ẋ = Ax +B(u +∆(x, z)), (1)

• Uncertain dynamical system

ż = f (x, z)

∆ = ∆(x, z)
(2)

• The value function to be optimized

V (x, u) =

∫ ∞

t

xTQx + uTRu dτ (3)

Assumptions
Assumption 1: x has a known dimension and it is

measurable. z has an unknown dimension and it is not

measurable.

Assumption 2: The function f (x, z) is unknown but

locally bounded, Lipschitz continuous and f (0,0) =

0. The output ∆(x, z) is measurable during learning.

Assumption 3: The uncertain system (2) has strong

unboundedness observability (SUO) property with

zero offset [r2].

Assumption 4: The uncertain system (2) has an up-

per bound for the L2-gain γ1.

Robust On-Policy. Extended from [r3]
1: Initialize: Select a stabilizingK(0) and set k = 0.

2: repeat

3: Execute u(k) = K(k)x to collect x, ∆ samples.

4: Find P (k) from

x(t)TP (k)x(t)− x(t + δt)TP (k)x(t + δt) (4)

=

∫ t+δt

t

xTQx + u(k)TRu(k) − 2

∫ t+δt

t

xTP (k)B∆ dτ.

5: Improve the policy by u(k+1) = −R−1BTP (k)x.

6: until Convergence

Robust Off-Policy
1: Initialize: Select a stabilizingK(0) and set k = 0.

2: repeat

3: Execute u(k) = K(k)x+e to collect x, ∆ samples.

4: Find P (k) andK(k+1) from

xT (t)P (k)x(t)− xT (t + δt)P (k)x(t + δt)

=2

∫ t+δt

t

xTK(k+1)TR(u +∆− u(k))dτ

+

∫ t+δt

t

xT (Q +K(k)TRK(k))xdτ.

(5)

5: until Convergence.

Theorem
Set γ2 < γ−1

1 and select Q ≥ 0, R > 0 to satisfy

R < ηI, η γ−2
2 I < Q, (6)

for some η > 0. Then, the uncertain system (1)-(2)

is globally asymptotically stable at the origin using

u(k+1) = K(k+1)x, ∀k or u(k+1) = K(k+1)x + e, ∀k in each

iteration of the on-policy or off-policy routines.

Simulation Result
Two inverted pendulums connected by a spring

ẏi1 = yi2,

ẏi2 = (
migl

Ji
− kr2

4Ji
)yi1 +

1

Ji
(ui +

kl2

4
sin(yj1)),

(7)

m1 = 2 kg, m2 = 2.5 kg, J1 = 0.5 kg.m2, J2 = 0.625 kg.m2,

k = 100 N/m, l = 0.5m, r = 1m and g = 9.81m/s2. We con-

sider pendulum one as the linear uncertain system, pendu-

lum two as the dynamical uncertainty and we fix u2 = K(0)z =[
−10 −5

]
z. The L2-gain: γ1 = 7.919.

Analytical method Model-free Algorithm

P ∗ = [404.210 3.924 P (5) = [404.210 3.924

3.924 8.773] 3.924 8.773]

K∗ = [-7.848 -17.546] K(5+1) = [-7.848 -17.546 ]
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Conclusions
A simple design criterion for stability of uncertain par-

tially linear system during on-policy and off-policy learn-

ing.

References
[r1] F. Adib Yaghmaie and S. Gunnarsson “A New Result on

Robust Adaptive Dynamic Programming for Uncertain Par-

tially Linear Systems”, In 2019 Decision and Control (CDC),

IEEE 58th Conference on, 2019, pp. 7480-7485.

[r2] Y. Jiang and Z.-P. Jiang, “Robust adaptive dynamic

programming with an application to power systems”, IEEE

Transactions onNeural Networks and Learning Systems, vol.

24, no. 7, pp. 1150–1156, 2013.

[r3] D. Vrabie and F. Lewis, “Neural network approach to

continuous time direct adaptive optimal control for partially

unknown nonlinear systems”, Neural Networks, vol. 22, no.

3, pp. 237–246, 2009.

LINKÖPING UNIVERSITY
Division of Automatic Control


