RL for Model-free Linear Quadratic Control with Process and Measurement Noises (r1) Farnaz Adib Yaghmaie (farnaz.adib.yaghmaie@liu.se), Fredrik Gustafsson (fredrik.gustafsson@liu.se)

Motivation

Reinforcement Learning (RL) studies Learning approaches for model-free optimal control of dynamical systems. It shows impressive results but in general it is difficult to analyze. Here, we consider a Linear Quadratic optimal control problem which is

- theoretically tractable,
- practical in various engineering domains, • possible to use Least Squares Temporal Difference Learn-
- ing (LSTD).

Linear Quadratic Problem

Consider a linear Gaussian dynamical system

 $x_{k+1} = Ax_k + Ba_k + w_k,$ $y_k = x_k + v_k,$

with $w_k \sim \mathcal{N}(\mathbf{0}, W_w), \ v_k \sim \mathcal{N}(\mathbf{0}, W_v)$

• Differential value function associated with a given policy π

$$V^{\pi}(y_k) = \mathbf{E}\left[\sum_{t=k}^{+\infty} (r(y_t, \pi(y_t)) - \lambda^{\pi}) | y_t |$$

• Average cost associated with the policy $\pi(y_k)$

$$\lambda^{\pi} = \lim_{N \to \infty} \frac{1}{N} \mathbf{E} \left[\sum_{t=1}^{N} r(y_t, \pi(y_t)) \right]$$

• Quadratic running cost with $R_u \ge 0$ and $R_a > 0$

$$r(y_k, a_k) = y_k^T R_y y_k + a_k^T R_a a_k$$

Lemma 1

The differential value function (3) associated with $\pi(y_k) = Ky_k$ is quadratic; i.e. $V^{\pi}(y_k) = y_k^T P^{\pi} y_k$

$$(A+BK)^T P^{\pi}(A+BK) - P^{\pi} +$$

and

$$\lambda^{\pi} = Trace(K^{T}B^{T}P^{\pi}BKW_{v}) + T$$
$$+ Trace(P^{\pi}W_{v}) - Trace(L^{2})$$

- (1)(2)
- (3)
 - (4)
- (5)
- $-K^T R_a K + R_y = \mathbf{0},$ $\Gamma race(P^{\pi}W_w)$ (7) $^{T}P^{\pi}LW_{v}).$

Alg 1- Average Off-Policy Learning

- 1: Initialize: $K^{(0)}$ and set k = 0.
- 2: repeat
- 3: $r(y_k, \pi^i)$ and $\bar{\lambda}^i = \frac{1}{\tau} \sum_{t=1}^{\tau} r_t$. Estimate P^i from

$$vecs(\hat{P}^{i}) = \left(\sum_{t=0}^{\tau-1} \Phi_{t}(\Phi_{t} - \Phi_{t+1})^{T}\right)^{-1} \left(\sum_{t=0}^{\tau-1} \Phi_{t}(r_{t} - \lambda^{i})\right)$$

Policy Improvement: Let 4:

$$c_{k} = y_{k}^{T}(R_{y} + K^{iT}R_{a}K)$$

$$\varphi_{k} = \begin{bmatrix} 2(a_{k} - K^{i}y_{k}) \\ vecv(a_{k}) - vecv \end{bmatrix}$$

$$\xi^{i} = \begin{bmatrix} vec(A^{T}P^{i}B) \\ vecs(B^{T}P^{i}B) \end{bmatrix},$$

• Estimation of some parameters

$$\hat{\xi}^{i} = \left(\sum_{t=0}^{\tau'-1} \varphi_{t} \varphi_{t}^{T}\right)^{-1} \left(\sum_{t=0}^{\tau'-1} \varphi_{t} c_{t}\right).$$
(9)

• Improved policy

$$K^{i+1} = -(\sum_{j=1}^{i} (\hat{N}^j + R_a))^{-1} (\sum_{j=1}^{i} \hat{H}^{jT}).$$
 (10)

5: **until** Convergence.

Theorem 1

 $K^{i+1}, i = 2..., I$; i.e. $\rho(A + BK^{i+1}) < 1$.

Simulation Results

A data center cooling with three sources coupled to their own cooling devices

$$x_{k+1} = \begin{bmatrix} 1.01 \ 0.01 \ 0 \\ 0.01 \ 1.01 \ 0.01 \\ 0 \ 0.01 \ 1.01 \end{bmatrix} x_k + I_3 a_k + w_k$$

with $W_w = I_3, W_v = I_3$ and $r(y_k, a_k) = y_k^T 0.001 I_3 y_k + a_k^T I_3 a_k$.

Policy evaluation:Let $\Phi_k := vecv(y_k), r_k :=$

 $(\hat{P}^{i} - \hat{P}^{i})y_{k} + y_{k+1}^{T}\hat{P}^{i}y_{k+1} - \bar{\lambda}^{i},$ $\left[egin{array}{c} \otimes y_k \ y(K^i y_k) \end{array}
ight],$

(8)

Assume that the estimated error is small enough. Then, Algorithm 1 produces stabilizing policy gains

Figure 2- The fraction of stable policy gains generated by each algorithm in all iterations

Conclusions

- noises.

References

[r1] F. Adib Yaghmaie and F. Gustafsson "Using Reinforcement Learning for Model-free Linear Quadratic Control with Process and Measurement Noises", In 2019 Decision and Control, IEEE 58th Conference on, 2019, pp. 6510-6517.

Figure 1-Median of infinite average cost for 100 stable trajectories

• We have considered both process and measurement

We have proposed a model -free algorithm that outperforms the classical *Q*- and off--policy learning.

LINKÖPING UNIVERSITY **Division of Automatic Control**