Estimation of Nonlinear Greybox Models for Marine Applications Presentation of licentiate thesis at LINK-SIC workshop

Fredrik Ljungberg

Division of Automatic Control Department of Electrical Engineering Linköping University

Research motivation

Why do we need marine models?

- Facilitation of development.
- Achieving satisfactory model-based control.

Main modelling challenges:

- Nonlinear dynamic forces and moments.
- Environmental disturbances, like wind, waves and ocean currents (often non-additive).

Problem description

Definition. A second-order modulus function is a function, $f : \mathbb{R}^{n+p} \to \mathbb{R}^m$ that can be written as

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \Phi^T(\boldsymbol{x})\boldsymbol{\theta},$$

where each element of the $p \times m$ matrix $\Phi(\mathbf{x})$ is on one of the forms $x_i, |x_i|, x_i x_j, x_i |x_j|$ for $i, j \leq n$ or zero and $\theta \in \mathbb{R}^p$ is a vector of coefficients.

Main objective

Obtaining <u>consistent estimators</u> of θ for the class of models that can be expressed as <u>second-order modulus functions</u>, which are robust to:

- Measurement uncertainty.
- Non-additive environmental disturbances.

Contributions

- 1. The suggestion of an experiment design where the input signal has a static offset of sufficient amplitude and the instruments in an IV method are forced to have zero mean.
- 2. A method to estimate the first-order moments of system disturbances alongside the model parameters.
- 3. Experimental work.

F. Ljungberg, M. Enqvist.

Obtaining Consistent Parameter Estimators for Second-Order Modulus Models. IEEE Control Systems Letters, 3(4):781-786, 10 2019.

F. Ljungberg, M. Enqvist.

Consistent Parameter Estimators for Second-order Modulus Systems with Non-additive Disturbances.

In Proceedings of the 21st IFAC World Congress, Berlin, Germany, 2020 (to appear).

Marine modelling: Undisturbed equations of motion

$$\dot{\eta} = J(\eta)\nu,$$

$$M\dot{\nu} + C(\nu)\nu + D(\nu)\nu = \tau_{\rm act}.$$

6-DOF models:

(surge, sway, heave, roll, pitch, yaw)

$$\eta = \begin{bmatrix} x_n & y_n & z_n & \phi & \theta & \psi \end{bmatrix}^T$$
$$\nu = \begin{bmatrix} u & v & w & p & q & r \end{bmatrix}^T$$
$$\tau_{\text{act}} = \begin{bmatrix} F_x & F_y & F_z & M_x & M_y & M_z \end{bmatrix}^T$$

Maneuvering models: (surge, sway, yaw)

$$\eta = \begin{bmatrix} x_n & y_n & \psi \end{bmatrix}^T$$
$$\nu = \begin{bmatrix} u & v & r \end{bmatrix}^T$$
$$\tau_{\text{act}} = \begin{bmatrix} F_x & F_y & M_z \end{bmatrix}^T$$

Marine modelling: Environmental disturbances Disturbed equations of motion:

 $\dot{\eta} = J(\eta)\nu,$ $M_{RB}\dot{\nu} + M_A\dot{\nu}_r + C_{RB}(\nu)\nu + C_A(\nu_r)\nu_r + D(\nu_r)\nu_r + F(\nu_q)\nu_q = \tau_{\text{act}}.$

• $\nu_r = \nu - \nu_c$, where ν_c is the velocity of an ocean current.

•
$$\nu_q = \nu - \nu_w$$
, where ν_w is the wind velocity.
Disturbances:

$$\nu_c = J^{-1}(\eta)\nu_{c,n},$$
 $\nu_w = J^{-1}(\eta)\nu_{w,n}.$

Note: Disturbance effects depend on the ship's attitude.

More about this on my poster!

Eliminating disturbances: Problem description Challenge: Estimate θ when

System: $\begin{cases} \mathbf{x}(k+1) = \Phi^T \left(\begin{bmatrix} \mathbf{x}^T(k) + \mathbf{v}^T(k) & \mathbf{u}^T(k) \end{bmatrix}^T \right) \theta_0 + \mathbf{w}(k), \\ \mathbf{y}(k) = \mathbf{x}(k) + \mathbf{e}(k), \end{cases}$ Model: $\hat{\mathbf{y}}(k) = \Phi^T \left(\begin{bmatrix} \mathbf{y}^T(k-1) & \mathbf{u}^T(k-1) \end{bmatrix}^T \right) \theta.$

Main assumptions:

- $f = \Phi^T(.)\theta$ is a second-order modulus function.
- $\mathbf{v}(k)$, $\mathbf{w}(k)$ and $\mathbf{e}(k)$ are disturbance signals.
- $\mathbf{v}(k)$ is independent of $\mathbf{x}(l)$ for $k \ge l$ (non-physical for ships).

Eliminating disturbances: Solutions

Main result

Challenge: Developing estimators of θ which are consistent despite measurement uncertainty and process disturbances.

Solution 1. Experiment design with excitation offset and zero-mean instruments.

Solution 2. Utilizing disturbance measurements $(\mathbf{y}_2(k) = \mathbf{v}(k))$.

Requires: Solution 1 (by Lemma 4.1).

Requires: Solution 1 and 2 (by Lemma 4.2).

Estimating disturbances: Problem description

Second-order modulus system in surge:

$$\begin{split} u(k+1) &= u(k) + \mathcal{X}_{u}u_{r}(k) + \mathcal{X}_{|u|u} |u_{r}(k)| u_{r}(k) + \mathcal{W}_{|u|u} |u_{q}(k)| u_{q}(k) + \mathcal{X}_{\mu}\tilde{\tau}_{x}(k), \\ y_{u}(k) &= u(k) + e_{u}(k), \\ y_{\psi}(k) &= \psi(k) + e_{\psi}(k). \end{split}$$

Here $u_{r}(k) &= u(k) - u_{c}(k)$ and $u_{q}(k) = u(k) - u_{w}(k).$

Sought parameters:

$$\theta = \begin{bmatrix} 1 + \mathcal{X}_u & \mathcal{X}_{|u|u} + \mathcal{W}_{|u|u} & \mathcal{X}_{\mu} \end{bmatrix}^T.$$

Disturbances:

$$u_c(k) = \cos(\psi(k)) \nu_{c,NS}(k) + \sin(\psi(k)) \nu_{c,EW}(k),$$

$$u_w(k) = \cos(\psi(k)) \nu_{w,NS}(k) + \sin(\psi(k)) \nu_{w,EW}(k).$$

Estimating Disturbances: Solutions

Main result

Challenge: Developing estimators of θ which are consistent despite non-additive environmental disturbances in the forms of ocean currents and wind. **Solution 1.** Augment the predictor with heading-angle dependent regressors. **Solution 2.** Utilize disturbance (wind) measurements.

Vessel/wind speed

Requires: Solution 1.

Requires: Solution 1 and 2.

Experimental study: Experiment description

The studied ship

- Size: Roughly 30 meters long
- Actuation: 2 azimuth thrusters (along centerline)
 - Sensing: GNSS receiver (with two antennas)
 - Propeller-based anemometer on weather vane

The collected data

- Day 1: Light breeze ($\approx 3 \text{ m/s}$)
 - Data used for validation
- Day 2: Fresh breeze ($\approx 10 \text{ m/s}$)
 - Data used for estimation
- Additional: 6 shorter experiments per day (6 10 min. each)
 - No ocean currents
 - No excitation offset

Experimental study: Results using sway data

Estimators:

- Regular LS $(\hat{\theta}_N^{LS_1})$
- Regular IV $(\hat{\theta}_N^{IV_1})$
- IV with heading-angle dependent regressors $(\hat{\theta}_N^{IV_2})$
- IV utilizing wind measurements $(\hat{\theta}_N^{IV_3})$

Average fit for each estimator:

Estimator	Fit - Sway
$\hat{\theta}_N^{LS_1}$	50.3056 ± 4.4771
$\hat{\theta}_N^{IV_1}$	63.3711 ± 8.3876
$\hat{\theta}_N^{IV_2}$	71.9800 ± 2.8652
$\hat{\theta}_N^{IV_3}$	70.3522 ± 3.4760

Conclusion and future work

Main result

- A framework for estimation of second-order modulus models has been suggested.
- The methods have been analyzed and show promising results in simulations.
- Some ideas have also been tested on real data.

Possible future work and ideas

- More focused study on experiment design.
- Connection to disturbance observers.
- Compare with blackbox approach.

Conclusion and future work

Main result

- A framework for estimation of second-order modulus models has been suggested.
- The methods have been analyzed and show promising results in simulations.
- Some ideas have also been tested on real data.

Possible future work and ideas

- More focused study on experiment design.
- Connection to disturbance observers.
- Compare with blackbox approach.

Acknowledgments

- ABB for collaboration.
- LINK-SIC for funding.

www.liu.se

