Conservative Linear Unbiased Estimation

Robin Forsling

Motivating Example

- Heterogenous platforms
- Information extracted by sensors
- Pre-processing of information
 - Estimates
- Communication of pre-processed information
- Dependencies: Cross-correlations
 - Complicates!
 - Double count information

Centralized Sensor Network

- Optimal information extraction
- Critical nodes
- Combinatorial complexity
- Bandwidth demanding

Decentralized Sensor Network

- Sub-optimal information extraction
- Robust & modular
- Reduced complexity
- Unknown cross-correlations

Centralized Sensor Network

- Optimal information extraction
- Critical nodes
- Combinatorial complexity
- Bandwidth demanding

Decentralized Sensor Network

- Sub-optimal information extraction
- Robust & modular
- Reduced complexity
- Unknown cross-correlations

Unknown Cross-Correlations

Data $\mathbf{y} = \begin{bmatrix} \mathbf{y}_1^\mathsf{T} & \mathbf{y}_2^\mathsf{T} \end{bmatrix}^\mathsf{T} = \mathbf{H}\mathbf{x} + \mathbf{v}$ is given where

$$\operatorname{cov}(\mathbf{y}) = \mathbf{R} = \begin{bmatrix} \mathbf{R}_1 & \mathbf{R}_{12} \\ \mathbf{R}_{21} & \mathbf{R}_2 \end{bmatrix}$$

where $\mathbf{R}_{12} = \mathbf{R}_{21}^{\mathsf{T}}$ is **unknown**. How to derive an estimate $\hat{\mathbf{x}}$?

Unknown Cross-Correlations

Data $\mathbf{y} = \begin{bmatrix} \mathbf{y}_1^\mathsf{T} & \mathbf{y}_2^\mathsf{T} \end{bmatrix}^\mathsf{T} = \mathbf{H}\mathbf{x} + \mathbf{v}$ is given where

$$\operatorname{cov}(\mathbf{y}) = \mathbf{R} = \begin{bmatrix} \mathbf{R}_1 & \mathbf{R}_{12} \\ \mathbf{R}_{21} & \mathbf{R}_2 \end{bmatrix}$$

where $\mathbf{R}_{12} = \mathbf{R}_{21}^{\mathsf{T}}$ is **unknown**. How to derive an estimate $\hat{\mathbf{x}}$?

Modelling: $\mathbf{R} \in \mathfrak{R}$ where $\mathfrak{R} = {\mathbf{R}'_a, \mathbf{R}'_b, \dots}$

No clue (!) for which $\mathbf{R}' \in \mathfrak{R}$ we have $\mathbf{R} = \mathbf{R}'$

Robin Forsling

Unknown Cross-Correlations

Problem: Have no **clue** for which $\mathbf{R}' \in \mathfrak{R}$ we have $\mathbf{R} = \mathbf{R}'$

Robin Forsling

Unknown Cross-Correlations

Problem: Have no **clue** for which $\mathbf{R}' \in \mathfrak{R}$ we have $\mathbf{R} = \mathbf{R}'$

Solution: Get a CLUE

Conservative Linear Unbiased Estimator (CLUE)

An estimator on the form $\hat{\mathbf{x}} = \mathbf{K}\mathbf{y}$ reporting a covariance \mathbf{P} is a *conservative linear unbiased estimator* if $\mathsf{E}\,\hat{\mathbf{x}} = \mathbf{x}$ and

 $\mathbf{P} \succeq \mathrm{cov}(\hat{\mathbf{x}}) = \mathrm{cov}(\mathbf{K}\mathbf{y})$

Relationship To (Classical) Linear Unbiased Estimation

Classical estimation:

- $\mathfrak{R} = \{\mathbf{R}\}$
- $\hat{\mathbf{x}} = \mathbf{K}\mathbf{y}$ implies covariance is calculated as $\mathbf{P} = \mathbf{K}\mathbf{R}\mathbf{K}^{\mathsf{T}}$

Relationship To (Classical) Linear Unbiased Estimation

Classical estimation:

- $\mathfrak{R} = \{\mathbf{R}\}$
- $\hat{\mathbf{x}} = \mathbf{K}\mathbf{y}$ implies covariance is calculated as $\mathbf{P} = \mathbf{K}\mathbf{R}\mathbf{K}^{\mathsf{T}}$

Conservative estimation:

•
$$\mathfrak{R} = \{\mathbf{R}'_a, \mathbf{R}'_b, \dots\}$$

Relationship To (Classical) Linear Unbiased Estimation

Classical estimation:

- $\mathfrak{R} = \{\mathbf{R}\}$
- $\hat{\mathbf{x}} = \mathbf{K}\mathbf{y}$ implies covariance is calculated as $\mathbf{P} = \mathbf{K}\mathbf{R}\mathbf{K}^{\mathsf{T}}$

Conservative estimation:

- $\mathfrak{R} = \{\mathbf{R}'_a, \mathbf{R}'_b, \dots\}$
- $\hat{\mathbf{x}} = \mathbf{K}\mathbf{y}$ says nothing about how **P** is calculated, only that $\mathbf{P} \succeq \operatorname{cov}(\mathbf{K}\mathbf{y})$ which is satisfied if

 $\mathbf{P} \succeq \mathbf{K} \mathbf{R}' \mathbf{K}^\mathsf{T}, \forall \mathbf{R}' \in \mathfrak{R}$

Optimality

Classical Linear Estimation

Conservative Linear Estimation

$$\begin{split} \mathbf{K}^* &= \mathop{\arg\min}_{\mathbf{K}} \quad \mathbf{P} & \mathbf{K}^*, \mathbf{P}^* &= \mathop{\arg\min}_{\mathbf{K}, \mathbf{P}} \quad \mathbf{P} \\ & \text{s. t.} \quad \mathsf{E} \mathbf{K} \mathbf{y} = \mathbf{x} & \text{s. t.} \quad \mathsf{E} \mathbf{K} \mathbf{y} = \mathbf{x} \\ & \mathbf{P} = \mathbf{K} \mathbf{R} \mathbf{K}^\mathsf{T} & \mathbf{P} \succeq \mathbf{K} \mathbf{R}' \mathbf{K}^\mathsf{T}, \forall \mathbf{R}' \in \mathfrak{R} \end{split}$$

Optimal estimator: **BLUE**

Optimal estimator: **Best CLUE**

$$\begin{split} \hat{\mathbf{x}}^{\text{BLUE}} &= \left(\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H}\right)^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{P}^{\text{BLUE}} &= \left(\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H}\right)^{-1} \end{split}$$

Optimality

Classical Linear Estimation

Conservative Linear Estimation

$$\begin{split} \mathbf{K}^* &= \mathop{\arg\min}_{\mathbf{K}} \quad \mathbf{P} & \mathbf{K}^*, \mathbf{P}^* &= \mathop{\arg\min}_{\mathbf{K}, \mathbf{P}} \quad \mathbf{P} \\ & \text{s. t.} \quad \mathsf{E} \mathbf{K} \mathbf{y} = \mathbf{x} & \text{s. t.} \quad \mathsf{E} \mathbf{K} \mathbf{y} = \mathbf{x} \\ & \mathbf{P} = \mathbf{K} \mathbf{R} \mathbf{K}^\mathsf{T} & \mathbf{P} \succeq \mathbf{K} \mathbf{R}' \mathbf{K}^\mathsf{T}, \forall \mathbf{R}' \in \mathfrak{R} \end{split}$$

Optimal estimator: **BLUE**

Optimal estimator: **Best CLUE**

$$\begin{split} \hat{\mathbf{x}}^{\text{BLUE}} &= \left(\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H}\right)^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{P}^{\text{BLUE}} &= \left(\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H}\right)^{-1} \end{split}$$

• Finding a best CLUE might be difficult

- Finding a best CLUE might be difficult
- Proposed **restriction**:

$$\begin{split} \mathbf{P} &= \mathbf{K} \bar{\mathbf{R}} \mathbf{K}^\mathsf{T} \\ \bar{\mathbf{R}} \succeq \mathbf{R}', \forall \mathbf{R}' \in \mathfrak{R} \end{split}$$

- Finding a best CLUE might be difficult
- Proposed **restriction**:

$$\begin{split} \mathbf{P} &= \mathbf{K} \bar{\mathbf{R}} \mathbf{K}^\mathsf{T} \\ \bar{\mathbf{R}} \succeq \mathbf{R}', \forall \mathbf{R}' \in \mathfrak{R} \end{split}$$

• $\bar{\mathbf{R}}\in\bar{\mathfrak{R}}$ is a conservative bound

Classical Linear Estimation

Conservative Linear Estimation

$$\begin{split} \mathbf{K}^* &= \mathop{\arg\min}_{\mathbf{K}} \quad \mathbf{P} & \mathbf{K}^*, \bar{\mathbf{R}}^* &= \mathop{\arg\min}_{\mathbf{K}, \bar{\mathbf{R}}} \quad \mathbf{P} \\ & \text{s. t.} \quad \mathsf{E} \mathbf{K} \mathbf{y} = \mathbf{x} & \text{s. t.} \quad \mathsf{E} \mathbf{K} \mathbf{y} = \mathbf{x} \\ & \mathbf{P} = \mathbf{K} \mathbf{R} \mathbf{K}^\mathsf{T} & \mathbf{P} = \mathbf{K} \bar{\mathbf{R}} \mathbf{K}^\mathsf{T}, \bar{\mathbf{R}} \in \bar{\mathfrak{R}} \end{split}$$

Optimal estimator: **BLUE** $\hat{\mathbf{x}}^{\text{BLUE}} = (\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y}$ $\mathbf{P}^{\text{BLUE}} = (\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H})^{-1}$ Optimal estimator: Restricted Best CLUE

$$\begin{split} \hat{\mathbf{x}}^* &= \left(\mathbf{H}^\mathsf{T}(\bar{\mathbf{R}}^*)^{-1}\mathbf{H}\right)^{-1}\mathbf{H}^\mathsf{T}(\bar{\mathbf{R}}^*)^{-1}\mathbf{y} \\ \mathbf{P}^* &= \left(\mathbf{H}^\mathsf{T}(\bar{\mathbf{R}}^*)^{-1}\mathbf{H}\right)^{-1} \end{split}$$

Restricted Best CLUE

Problem boils down to:

Find the minimum conservative bound $\bar{\mathbf{R}}^*$

where a conservative bound $\bar{\mathbf{R}}$ has the property

 $\bar{\mathbf{R}} \succeq \mathbf{R}', \forall \mathbf{R}' \in \mathfrak{R}$

Minimum Conservative Bounds

Assume:

- $\mathbf{R} = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$
- a, d known
- *b* unknown

Points:

 $\begin{aligned} \mathbf{x}_1 &= \begin{bmatrix} \sqrt{a} \\ \sqrt{b} \end{bmatrix} \\ \mathbf{x}_2 &= \begin{bmatrix} \sqrt{a} \\ -\sqrt{b} \end{bmatrix} \end{aligned}$

Minimum Conservative Bounds

Problem:

• Incomparable matrices

Solutions:

- Loss function $J(\mathbf{P})$
- Parametrize $\bar{\mathbf{R}}$

Figure: $\bar{\mathbf{R}}(\omega) = \frac{a}{\omega} + \frac{b}{1-\omega}$ $\omega \in (0, 1)$

Thanks for listening!

robin.forsling@liu.se

www.liu.se

