Adaptive Gradient Descent without Descent

Yura Malitsky MAI Optimization Seminar, 19 November 2020

Reference: ICML-2020, arxiv:1910.09529

Konstantin Mishchenko (PhD student, KAUST)

We want to solve

$$\min_{x\in\mathbb{R}^d}f(x)$$

where $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable.

How?

- Gradient descent
- Accelerated gradient methods
- Newton's methods

- Tensor methods
- Stochastic methods
- Coordinate methods

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

History:

O. Cauchy (1847), H. Curry (1944), A. Goldshtein (1962), B. Polyak (1963), L. Armijo (1966)

Theorem

Suppose f is convex, ∇f is L-Lipschitz, and $\lambda \in (0, \frac{2}{L})$. Then $x^k \to x^* \in \operatorname{argmin} f$. For $\lambda = \frac{1}{L}$, the rate is

$$f(x^k) - f(x^*) \le \frac{L \|x^0 - x^*\|^2}{2(2k+1)}.$$

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Let x(t) be a continuous curve with $x(\lambda k) = x^k$. For $t = \lambda k$,

$$egin{aligned} & x(t+\lambda) = x(t) - \lambda
abla f(x(t)) \ & \iff \ & rac{x(t+\lambda) - x(t)}{\lambda} = -
abla f(x(t)) \ & x'(t) = -
abla f(x(t)) \end{aligned}$$

If $\lambda \to 0$,

Gradient flow

Continuous counterpart of GD:

 $\begin{aligned} x(0) &= x_0 \\ x'(t) &= -\nabla f(x(t)) \end{aligned}$

Let $\Psi(t) = \frac{1}{2} \|x(t) - x^*\|^2$ be a Lyapunov function. Then

$$\begin{aligned} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| x(t) - x^* \|^2 &= \langle x(t) - x^*, x'(t) \rangle \\ &= \langle x(t) - x^*, -\nabla f(x(t)) \rangle \\ &\leq f(x^*) - f(x(t)) \qquad //\mathrm{convexity} \\ &\leq 0 \end{aligned}$$

 $\implies \qquad x(t) \to x^* \in \operatorname{argmin} f \qquad \text{and} \qquad f(x(t)) - f(x^*) \le \frac{1}{2t} \|x_0 - x^*\|^2$

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

- 1. GD is not general: many functions are not L-smooth (i.e., gradients are not L-Lipschitz).
- 2. GD is not a free lunch: one needs to guess λ .
- 3. GD is not robust: with $\lambda \geq \frac{2}{l}$ may lead to divergence.
- 4. GD is slow: even if L is finite, it might be larger than local smoothness.

Workaround-1

What to do?

 GD is not general: many functions are not *L*-smooth.
 Solutions: mirror descent with relative smoothness / dual preconditioning? [Birnbaum et.al., 2011, Bauschke et.al., 2016, Lu et.al., 2016, Maddison et.al., 2019]

$$abla h(x^{k+1}) =
abla h(x^k) - \lambda
abla f(x^k)$$
 or $x^{k+1} = x^k - \lambda
abla h(
abla f(x^k))$

Cons: work only for specific f, still need to guess λ .

2. GD is not a free lunch: one needs to guess λ . Solution: line search?

try
$$\lambda = \gamma^i$$

 $x^{k+1} = x^k - \lambda \nabla f(x^k)$
until $f(x^{k+1}) \le f(x^k) - c \|\nabla f(x^k)\|^2$

Cons: more expensive than GD

Workaround-2

3. GD is slow

Solution: Polyak's stepsize?

$$\lambda_k = \frac{f(x^k) - f_*}{\|\nabla f(x^k)\|^2}$$
$$\kappa^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

Cons: needs *f*_{*} **Solution-2:** Barzilai-Borwein stepsize?

$$\lambda_k = \frac{\langle \nabla f(x^k) - \nabla f(x^{k-1}), x^k - x^{k-1} \rangle}{\|\nabla f(x^k) - \nabla f(x^{k-1})\|^2}$$
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

Cons: guarantees only for quadratic *f*, doesn't work in general. Counterexample in [Burdakov et.al., 2019]

Required tools

Law of cosines:

$$||a + b||^2 = ||a||^2 + 2\langle a, b \rangle + ||b||^2$$

Convexity:

$$\langle \nabla f(x), y-x \rangle \leq f(y) - f(x)$$

Smoothness:

$$\|\nabla f(y) - \nabla f(x)\| \le L \|y - x\|$$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$$

descent inequality

Standard analysis of GD

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Law of cosines:

$$\begin{aligned} \|x^{k+1} - x^*\|^2 &= \|x^{k+1} - x^k + x^k - x^*\|^2 \\ &= \|x^k - x^*\|^2 + 2\langle x^{k+1} - x^k, x^k - x^* \rangle + \|x^{k+1} - x^k\|^2 \\ &= \|x^k - x^*\|^2 + 2\lambda \langle \nabla f(x^k), x^* - x^k \rangle + \|x^{k+1} - x^k\|^2 \end{aligned}$$

Convexity:

$$2\lambda \langle \nabla f(x^k), x^* - x^k \rangle \leq 2\lambda (f(x^*) - f(x^k))$$

Smoothness:

 \longrightarrow

$$f(x^{k+1}) \leq f(x^k) + \langle
abla f(x^k), x^{k+1} - x^k
angle + rac{L}{2} \|x^{k+1} - x^k\|^2$$

$$f(x^{k+1}) \le f(x^k) - \frac{2 - \lambda L}{2\lambda} \|x^{k+1} - x^k\|^2$$

Summing up,

$$\|x^{k+1} - x^*\|^2 + 2\lambda(f(x^{k+1}) - f(x^*)) \le \|x^k - x^*\|^2 - (1 - \lambda L)\|x^{k+1} - x^k\|^2$$

Let $\Psi_k = \|x^k - x^*\|^2$, $\lambda \le \frac{1}{L}$

$$\Psi_{k+1} + 2\lambda(f(x^{k+1}) - f(x^*)) \leq \Psi_k$$

$$\begin{aligned} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ L_k &= \frac{\|x^k - x^{k-1}\|}{\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \\ \lambda_k &= \frac{1}{L_k} \end{aligned}$$

$$\begin{aligned} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ L_k &= \frac{\|x^k - x^{k-1}\|}{\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \\ \lambda_k &= \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{1}{2L_k}\right\} \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}} \end{aligned}$$

Adaptive Gradient Descent without Descent

$$x^{k+1} = x^{k} - \lambda_{k} \nabla f(x^{k})$$
$$\lambda_{k} = \min\left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1} \frac{\|x^{k} - x^{k-1}\|}{2\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|} \right\}$$
$$\theta_{k} = \frac{\lambda_{k}}{\lambda_{k-1}}$$

New energy:

$$\Psi_{k+1} = \|x^{k+1} - x^*\|^2 + 2\lambda_k(1+\theta_k)(f(x^k) - f(x^*)) + \frac{1}{2}\|x^{k+1} - x^k\|^2$$

Decrease of energy:

$$\Psi_{k+1} \leq \Psi_k + \left(\lambda_k^2 \|\nabla f(x^k) - \nabla f(x^{k-1})\|^2 - \frac{1}{4} \|x^k - x^{k-1}\|^2\right) \\ + 2 \left(\lambda_{k-1}(1+\theta_{k-1}) - \lambda_k \theta_k\right) f(x^{k-1}) - f(x^*))$$

Convergence

Adaptive gradient descent without descent:

$$\lambda_{k} = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{\|x^{k} - x^{k-1}\|}{2\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|}\right\}$$
$$x^{k+1} = x^{k} - \lambda_{k}\nabla f(x^{k})$$
$$\theta_{k} = \frac{\lambda_{k}}{\lambda_{k-1}}$$

Theorem

Suppose that $f: \mathbb{R}^d \to \mathbb{R}$ is convex with locally Lipschitz gradient ∇f . Then $x^k \to x^* \in \operatorname{argmin} f$ and

$$f(\hat{x}^k) - f(x^*) \leq \frac{C}{\sum_{i=1}^k \lambda_i} = \mathcal{O}\left(\frac{1}{k}\right).$$

*I*₂-regularized logistic regression:

$$\frac{1}{n}\sum_{i=1}^{n}\log(1+\mathrm{e}^{-b_{i}a_{i}^{\top}x})+\frac{\gamma}{2}\|x\|^{2}$$

Figure 1: mushroom dataset

Let f be μ -strongly convex, i.e.,

$$\alpha f(x) + (1-\alpha)f(y) \ge f(\alpha x + (1-\alpha)y) + \frac{\alpha(1-\alpha)}{2}\mu \|x-y\|^2$$

GD complexity for $||x^{k} - x^{*}||^{2} \le \varepsilon$ is $\mathcal{O}(\frac{L}{\mu} \log \frac{1}{\varepsilon})$ **Our complexity** for $||x^{k} - x^{*}||^{2} \le \varepsilon$ is $\mathcal{O}(\frac{L'}{\mu'} \log \frac{1}{\varepsilon})$,

where L', μ' are *local* smoothness and strong convexity on $\overline{\text{conv}}\{x_0, x_1, \dots\}$

Acceleration (heuristic)

When f is μ -strongly convex and L-smooth, the "best" GD-type method is

$$y^{k+1} = x^{k} - \frac{1}{L} \nabla f(x^{k}),$$

$$x^{k+1} = y^{k+1} + \beta(y^{k+1} - y^{k})$$

where $\beta = rac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ [Nesterov, 2004]

We know how to estimate L locally:

$$\lambda_{k} = \min\left\{\sqrt{1 + \frac{\theta_{k-1}}{2}}\lambda_{k-1}, \frac{\|x^{k} - x^{k-1}\|}{2\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|}\right\}$$

What about μ ? f is μ -strongly convex $\implies f^*$ is $\frac{1}{\mu}$ -smooth. Hence,

$$\Lambda_{k} = \min\left\{\sqrt{1 + \frac{\Theta_{k-1}}{2}}\Lambda_{k-1}, \frac{\|p^{k} - p^{k-1}\|}{2\|\nabla f^{*}(p^{k}) - \nabla f^{*}(p^{k-1})\|}\right\}$$

What is p_k ? Let's set $p_k = \nabla f(x^k)$ and use $\nabla f^*(\nabla f(x)) = x$

Adaptive "accelerated" gradient descent

$$\begin{split} \lambda_{k} &= \min \Big\{ \sqrt{1 + \frac{\theta_{k-1}}{2}} \lambda_{k-1}, \frac{\|x^{k} - x^{k-1}\|}{2\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|} \\ \Lambda_{k} &= \min \Big\{ \sqrt{1 + \frac{\Theta_{k-1}}{2}} \Lambda_{k-1}, \frac{\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|}{2\|x^{k} - x^{k-1}\|} \\ \beta_{k} &= \frac{\sqrt{1/\lambda_{k}} - \sqrt{\lambda_{k}}}{\sqrt{1/\lambda_{k}} + \sqrt{\lambda_{k}}} \\ y^{k+1} &= x^{k} - \lambda_{k} \nabla f(x^{k}) \\ x^{k+1} &= y^{k+1} + \beta_{k}(y^{k+1} - y^{k}) \\ \theta_{k} &= \frac{\lambda_{k}}{\lambda_{k-1}}, \ \Theta_{k} &= \frac{\Lambda_{k}}{\Lambda_{k-1}} \end{split}$$

Figure 2: mushroom dataset

Stochastic extensions (heuristic)

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

SGD:
$$x^{k+1} = x^k - \lambda_k \nabla f_{\xi^k}(x^k)$$

Adaptive SGD:

1. Sample
$$\xi^{k}$$

2. $L_{k} = \frac{\|\nabla f_{\xi^{k}}(x^{k}) - \nabla f_{\xi^{k}}(x^{k-1})\|}{\|x^{k} - x^{k-1}\|}$
3. $\lambda_{k} = \min\left\{\sqrt{1 + \frac{\theta_{k-1}}{\beta}}\lambda_{k-1}, \frac{\alpha}{L_{k}}\right\}$
4. $x^{k+1} = x^{k} - \lambda_{k}\nabla f_{\xi^{k}}(x^{k})$
5. $\theta_{k} = \frac{\lambda_{k}}{\lambda_{k-1}}$

Figure 3: Test accuracy

- Acceleration
- Mirror descent variant
- Nonconvexity