Policy Gradient on cartpole

Farnaz Adib Yaghmaie

Linkoping University, Sweden
farnaz.adib.yaghmaie@liu.se

March 12, 2021
Policy Gradient on cartpole

A harbor

The cartpole

Photo credit: @http://rhm.rainbowco.com.cn/

Photo credit: @https://gym.openai.com/
- **States:** 1. position of the cart on the track, 2. angle of the pole with the vertical, 3. cart velocity, and 4. rate of change of the angle.

- **Actions:** +1, -1

- **Reward:**

\[r_t = \begin{cases}
1, & \text{if the pendulum is upright} \\
0, & \text{otherwise}
\end{cases} \]
Episode ends when:

- The pole is more than 15 degrees from vertical or
- The cart moves more than 2.4 units from the center or
- The episode lasts for 200 steps.

Solvability Criterion: Getting average sum reward of 195.0 over 100 consecutive trials.
We build a deep network to represent the pdf $\pi_\theta = network(s)$

```python
network = keras.Sequential([keras.layers.Dense(30, input_dim=n_s, activation='relu'),
                           keras.layers.Dense(30, activation='relu'),
                           keras.layers.Dense(n_a, activation='softmax')])
```

and assign a cross entropy cost function for it

```python
network.compile(loss='categorical_crossentropy')
```
1. Collect data
 - Observe s and sample $a \sim \pi_\theta(s)$

 $\text{softmax_out} = \text{network}(\text{state})$

 $a = \text{np.random.choice}(n_a, p=\text{softmax_out}.\text{numpy()}[0])$

 - Apply a and observe r.
 - Add s, a, r to the history.

2. Update the parameter θ
 - We calculate the reward to go and standardize it.
 - We optimize the policy

 $\text{target_actions} = \text{tf.keras.utils.to_categorical}(\text{np.array}(\text{actions}), n_a)$

 $\text{loss} = \text{self.network}_.\text{train_on_batch}(\text{states}, \text{target_actions},$

 $\text{sample_weight=rewards_to_go})$
Try the following:

- Run Crash_course_on_RL/pg_on_cartpole_notebook.ipynb and verify to get the solution after \(\sim 1000 \) episodes.

- Change \(0 \leq \gamma \leq 1 \) to see if you can solve the problem faster '

 'GAMMA': 0.9 in agent_par

- Make sure you understand the code!
How the reward looks like during learning

Figure: Total reward vs. no. of episodes
Email your questions to

farnaz.adib.yaghmaie@liu.se