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Build mathematical models from observed
input and output signals
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An Introductory Example: System
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An Introductory Example 2: Model
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An Introductory Example 3: Model Fitting

5 

The System and the Model 

System 

Model 

+ 

- 
Minimize 

 error Measured input 



Data from the Gripen Aircraft
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Output: Pitch
Inputs: Canard, Elevator, Leading Edge Flap

I How do the control surface angles affect the pitch rate?



Using All Inputs
u1 canard angle; u2 Elevator angle; u3 Leading edge flap;

y(t)= −a1y(t − T )− a2y(t − 2T )− a3y(t − 3T )− a4y(t − 4T )

+b1
1u1(t − T ) + . . .+ b4

1u1(t − 4T )

+b1
2u2(t − T ) + . . .+ b3

1u3(t − T ) + . . .+ b3
4u3(t − 4T )

Estimate 16 parameter using half of the data record – Simulate the
model using the whole data record.
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Dashed line: Measured Pitch rate. Solid line: The pitch rate
according to the model.
First half estimation data - second half validation data.



System Identification: Issues

I Select a class of candidate models
I Select a member in this class using the observed data
I Evaluate the quality of the obtained model
I Design the experiment so that the model will be “good”.



The System Identification Flow
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X : The Experiment
D: The Measured Data
M: The Model Set
I: The Identification Method
V: The Validation Procedure



Models: General Aspects for Dynamical Systems

I A model is a mathematical expression that describes the
connections between measured inputs and outputs, and
possibly related noise sequences.

I They can come in many different forms
I The models are labeled with a parameter vector θ
I A common framework is to describe the model as a predictor

of the next output, based on observations of past input-output
data.
Observed input–output (u, y) data up to time t: Z t

Model described by predictor: M(θ) : ŷ(t|θ) = g(t, θ,Z t−1).



Estimation

If a model, ŷ(t|θ), essentially is a predictor of the next output, is is
natural to evaluate its quality by assessing how well it predicts:
Form the Prediction error and measure its size:

ε(t, θ) = y(t)− ŷ(t|θ), `(ε(t, θ)) = ε2(t, θ)

How has it performed historically?

VN(θ) =
N∑
t=1

`(ε(t, θ))

Which model in the structure performed best?

θ̂N = arg min
θ∈DM

VN(θ)

Often coincides with the Maximum Likelihood Estimate.



Linear Regressions

The linear regression:

y(t) = ϕT (t)θ + e(t)

y(t) and ϕ(t) known/measured at time t. Find a good value of θ!
This covers many useful systems and signals models:
I AR: ϕT (t) = [−y(t − 1) . . .− y(t − n)]
I ARX:

ϕT (t) = [−y(t − 1) . . .− y(t − n), u(t − 1) . . . u(t −m)]

I “Semi-physical”, non-linear models:

y(t) = a1y
3(t − 1) + a2y(t − 1)u1(t − 1) +

+a3 log u2(t − 2)



The (Recursive) Least Squares Estimate

θ̂(t) = arg min
t∑

j=1

(y(j)− ϕT (j)θ)2 =

 t∑
j=1

ϕ(j)ϕT (j)

−1
t∑

j=1

y(j)ϕ(j)

= R−1(t)f (t)

... can be exactly rewritten

θ̂(t) = θ̂(t − 1) + R−1(t)ϕ(t)ε(t)

ε(t) = y(t)− ϕT (t)θ̂(t − 1)

R(t) = R(t − 1) + ϕ(t)ϕT (t)



Check Algebra!

θ̂(t) = R−1(t)f (t) = R−1(t)(f (t − 1) + ϕ(t)y(t))

= R−1(t)(R(t − 1)θ̂(t − 1) + ϕ(t)y(t))

= R−1(t)[(R(t)− ϕ(t)ϕT (t))θ̂(t − 1) + ϕ(t)y(t)]

= θ̂(t − 1) + R−1(t)ϕ(t)[y(t)− ϕT (t)θ̂(t − 1)])

Note that

P(t) = R−1(t) = [R(t − 1) + ϕ(t)ϕT (t)]−1

P(t) = P(t − 1) +
P(t − 1)ϕ(t)ϕT (t)P(t − 1)
1+ ϕT (t)P(t − 1)ϕ(t)



So ...

Recursive Least Squares

θ̂(t) = θ̂(t − 1) + P(t)ϕ(t)ε(t)

ε(t) = y(t)− ϕT (t)θ̂(t − 1)

P(t) = P(t − 1) +
P(t − 1)ϕ(t)ϕT (t)P(t − 1)
1+ ϕT (t)P(t − 1)ϕ(t)

Note that the updating is driven by ϕ(t)ε(t) = −1
2

d
dθ [ε

2(t)] (the
reward for a good model!
Compare with Gradient Policy RL!



Adaptive Control
Use a recursive estimator to build a system model at all times.
Compute a controller k based on the current model!

System

Regulator !ℎ(𝑡)

Control Design 
!ℎ 𝑡 = 𝑘( (𝜃(𝑡))

Recursive 
Identifier (𝜃(𝑡)

𝑢(𝑡) 𝑦(𝑡)



Example (used in RL) Measure all states

x(t + 1) = Ax(t) + Bu(t) + w(t)

y(t) = x(t) + e(t)

Example:

A =

1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

 B = I

Identification code: [Matlab System identification Toolbox]

ms = idss(A,B,C,D)
m0=idss(rand(3,3),rand(3,3),eye(3,3),zeros(3,1))
m0.Structure.C.Free = zeros(3,3) [ % C fixed to identity]
m = ssest(data,m0,ssestOptions,’DisturbanceModel’, ’est’);
A = m.A, B = m.B;



Identification Result

Note that system is unstable; it must be run under stabilizing
feedback!

Test: 100 observations, Additive observation noise with variance 1
in each channel: Gives the model (cf true values)

Â =

1.0016 0.0065 0.0076
0.0267 1.0192 0.0101
0.0370 0.0419 0.9672

 A =

1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01


B̂ =

1.0101 0.0140 −0.0094
0.0058 0.9899 −0.0120
0.0121 0.0194 0.9607

 B = I



Summary

I Traditional Control approach to RL: Build a model and use
that for control design. (“Model Building RL”).

I System identification is a general and versatile tool to build
models from data.

I Discuss next time (April 6) Pro’s and con’s of this traditional
approach compared to the new techniques.


