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System Identification: An Overview

Build mathematical models from observed
input and output signals

Lennart Ljung



An Introductory Example: System
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An Introductory Example 2: Model

The Model
u y
Input Output
rudders v_elocity
aileron pitch angle
thrust

u, y: measured time or frequency D
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An Introductory Example 3: Model Fitting

The System and the Model
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Data from the Gripen Aircraft
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Output: Pitch
Inputs: Canard, Elevator, Leading Edge Flap

» How do the control surface angles affect the pitch rate?



Using All Inputs
up canard angle; u, Elevator angle; u3 Leading edge flap;
y(t)=—ary(t = T) —ay(t — 2T) — a3y(t — 3T) — asy(t — 4T)
+biu(t— T)+ ...+ bju(t —4T)
+b3ua(t — T)+ ...+ Blug(t — T) + ...+ bjuz(t — 4T)

Estimate 16 parameter using half of the data record — Simulate the
model using the whole data record.

Dashed line: Measured Pitch rate. Solid line: The pitch rate
according to the model.
First half estimation data - second half validation data.



System ldentification: Issues

» Select a class of candidate models
» Select a member in this class using the observed data
» Evaluate the quality of the obtained model

» Design the experiment so that the model will be “good”.



The System Identification Flow

X: The Experiment

D: The Measured Data

M: The Model Set

7T: The ldentification Method
V: The Validation Procedure

No, try new X



Models: General Aspects for Dynamical Systems

>

v

A model is a mathematical expression that describes the
connections between measured inputs and outputs, and
possibly related noise sequences.

They can come in many different forms

The models are labeled with a parameter vector 6

A common framework is to describe the model as a predictor
of the next output, based on observations of past input-output
data.

Observed input—output (u,y) data up to time t: Z*
Model described by predictor: M(0) : 9(t|0) = g(t,0,Zt71).



Estimation

If a model, y(t|0), essentially is a predictor of the next output, is is
natural to evaluate its quality by assessing how well it predicts:
Form the Prediction error and measure its size:

£(6,0) = y(£) — 9(t[60), L(e(t,0)) = £2(2,0)
How has it performed historically?

N

V(0) = 3 U(e(t,0))

t=1

Which model in the structure performed best?

N

Oy = arg min Vy(0)
0eD g

Often coincides with the Maximum Likelihood Estimate.



Linear Regressions

The linear regression:

y(t) =@ (£)0 + e(t)

y(t) and ¢(t) known/measured at time t. Find a good value of 6!
This covers many useful systems and signals models:

> AR: @ T(8) = [-y(t—1)... — y(t — n)]
> ARX:

oT(8) = [yt —1)... — y(t = n),u(t —1)...u(t — m)]
» “Semi-physical”, non-linear models:

y(t) = awy(t—1)+ay(t — Du(t —1) +
+aslog ua(t — 2)



The (Recursive) Least Squares Estimate

O(t) = arg min > _(y(j) — " (j)6) !Z 0(j) T(J)] > y()el)

j=1 j=1
= R7Y(t)f(¢)
... can be exactly rewritten



Check Algebral
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Note that

[R(t = 1) + o(t)eT ()]

P(t — Dp(t)p" (t)P(t — 1)
1+ T ()Pt — 1)p(t)

P(t)=P(t—1)+



So ...

Recursive Least Squares

0(t) = 0(t — 1) + P(t)e(t)e(t)
e(t) = y(t) — " ()A(t — 1)

P(t — Dp(t)pT (t)P(t — 1)
P =PIt =D+ = 0P = 1)o(d)

Note that the updating is driven by o(t)e(t) = —1 -2 [c2(t)] (the
reward for a good model!
Compare with Gradient Policy RL!



Adaptive Control

Use a recursive estimator to build a system model at all times.
Compute a controller k based on the current model!

)
u(t) y(©)
System

\—
)

Regulator A(t)

I

Control Design

h(®) = k(8(1)

I

Recursive

Identifier 6(t)
—




Example (used in RL) Measure all states

x(t+ 1) = Ax(t) + Bu(t) + w(t)
y(t) = x(t) + e(t)

Example:

1.01 001 O
A= 1001 1.01 0.01 B=1
0 0.01 101

Identification code: [Matlab System identification Toolbox]

ms

idss(A,B,C,D)

mO0=idss(rand(3,3) ,rand(3,3),eye(3,3) ,zeros(3,1))
m0.Structure.C.Free = zeros(3,3) [ % C fixed to identityl]

m
A

ssest(data,m0,ssestOptions, ’DisturbanceModel’, ’est’);
m.A, B = m.B;



Identification Result

Note that system is unstable; it must be run under stabilizing

feedback!

Test: 100 observations, Additive observation noise with variance 1
in each channel: Gives the model (cf true values)
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0.0065
1.0192
0.0419

0.0140
0.9899
0.0194

0.0076 1.01 001 O
0.0101 A= (0.01 1.01 0.01
0.9672 0 0.01 101
—0.0094
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Summary

» Traditional Control approach to RL: Build a model and use
that for control design. (“Model Building RL").

» System identification is a general and versatile tool to build
models from data.

» Discuss next time (April 6) Pro’s and con'’s of this traditional
approach compared to the new techniques.



