A Quick Review on RL and MDP

Farnaz Adib Yaghmaie

Linkoping University, Sweden farnaz.adib.yaghmaie@liu.se

April 6, 2021

Introduction to Reinforcement Learning

Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Finding suitable actions to take in a given situation in order to maximize a reward ¹.

3

¹Richard S Sutton & Andrew G Barto. *Reinforcement learning: An introduction*, volume 1. MIT press Cambridge, 1998.

Introduction to Reinforcement Learning

How RL is different from other branches of ML?

- No supervisor; only a reward
- The action will effect subsequent data
- Dynamic data vs. Static data

Introduction to Reinforcement Learning

An RL framework

Photo Credit: @ https://en.wikipedia.org/wiki/Reinforcement_learning

A Markov Decision Process (MDP) is a tuple $< S, A, P, R, \gamma >$

- S: The set of states.
- *A*: The set of actions.
- \mathcal{P} : The set of transition probability.
- R: The set of immediate rewards associated with the state-action pairs.
- $0 \le \gamma \le 1$: Discount factor.

Modified version of @ https://en.wikipedia.org/ wiki/Markov_decision_process

States and actions

States: Describe internal status of MDP

Actions: Possible choices to make in each state of MDP

Transition probability

Transitions probability: \mathcal{P} is the set of transition probability with n_a matrices each of dimension $n_s \times n_s$ where s, s' entry reads

$$[\mathcal{P}^{a}]_{ss'} = p[s_{t+1} = s'|s_t = s, \ a_t = a]$$
(1)

Reward

Reward:

$$r_t = r(s, a) \tag{2}$$

Total reward:

$$R(T) = \sum_{t=1}^{T} \gamma^t r_t \tag{3}$$

Average reward:

$$R(T) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_t$$
(4)

Discount factor

Do you care about future as much as now (and past)?

 $\gamma \in [0,1]$:

- $\gamma \to 0$: We only care about the current reward not what we'll receive in future
- $\gamma \rightarrow 1$: We care about all rewards equally

RL Agent

RL goal

Generate actions to maximize the future rewards

-RL agent's components

- Policy: The agent's decision
- Value function: how good the agent does in a state

$$V(s) = \mathbf{E}\left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s\right]$$

Model: The agent's interpretation of the environment

Not all components are necessary!

RL Agent

Categorizing RL agent

Policy Gradient	Learning policy
Dynamic Programming based	Learning value function
Model building	Learning the model of environment

Email your questions to

farnaz.adib.yaghmaie@liu.se