A Quick Review on RL and MDP

Farnaz Adib Yaghmaie

Linkoping University, Sweden
farnaz.adib.yaghmaie@liu.se

April 6, 2021
Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Finding suitable actions to take in a given situation in order to maximize a reward \(^1\).

How RL is different from other branches of ML?

- No supervisor; only a reward
- The action will effect subsequent data
- Dynamic data vs. Static data
An RL framework

- Reward
- Environment
- Agent

Photo Credit: @ https://en.wikipedia.org/wiki/Reinforcement_learning
A Markov Decision Process (MDP) is a tuple $< S, A, P, R, \gamma >$

- **S**: The set of states.
- **A**: The set of actions.
- **P**: The set of transition probability.
- **R**: The set of immediate rewards associated with the state-action pairs.
- **$0 \leq \gamma \leq 1$**: Discount factor.

Modified version of @ https://en.wikipedia.org/wiki/Markov_decision_process
States: Describe internal status of MDP

Actions: Possible choices to make in each state of MDP
Transitions probability: \mathcal{P} is the set of transition probability with n_a matrices each of dimension $n_s \times n_s$ where s, s' entry reads

$$[\mathcal{P}^a]_{ss'} = p[s_{t+1} = s'|s_t = s, a_t = a]$$

(1)
A Quick Review on RL and MDP

Markov Decision Process

Reward

\[r_t = r(s, a) \] (2)

Total reward:

\[R(T) = \sum_{t=1}^{T} \gamma^t r_t \] (3)

Average reward:

\[R(T) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_t \] (4)
Do you care about future as much as now (and past)?

\(\gamma \in [0, 1]: \)
- \(\gamma \to 0: \) We only care about the current reward not what we’ll receive in future
- \(\gamma \to 1: \) We care about all rewards equally
RL goal

Generate actions to maximize the future rewards
Policy: The agent’s decision

Value function: how good the agent does in a state

\[V(s) = \mathbb{E} \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \mid s_t = s \right] \]

Model: The agent’s interpretation of the environment

Not all components are necessary!
Policy Gradient
Learning policy
Dynamic Programming based
Learning value function
Model building
Learning the model of environment
Email your questions to

farnaz.adib.yaghmaie@liu.se