
Q-Learning

Q-Learning

Farnaz Adib Yaghmaie

Linkoping University, Sweden
farnaz.adib.yaghmaie@liu.se

April 6, 2021

1 / 22

Q-Learning
Introduction

What is Q-learning

The most popular Dynamic Programming approach to solve an RL
problem

Is based on Bellman principle’s of optimality
Relies on definition of Quality function (also called
state-action value function)
In Q-learning, we learn the Q function

2 / 22

Q-Learning
Introduction

Three main components of an RL agent

Policy: The agent’s decision
Value function: how good the agent does in a state
Model: The agent’s interpretation of the environment

3 / 22

Q-Learning
Introduction

Rules of the game

Use Bellman’s principle of optimality and

estimate/evaluate the Quality function Q(s, a) for all s, a
choose a that has the best Quality in s.

4 / 22

Q-Learning
Q function

Definition

Q function or state-action value function: The expected total
reward starting from state s, taking an arbitrary action a and then
following the policy π.

Q(s, a) = r(s, a) + γ E[Q(s ′, π(s ′))]

5 / 22

Q-Learning
Q function

Policy

The action maximizes the expected total reward starting in s

π = arg max
a

Q(s, a).

6 / 22

Q-Learning
Q function

Summary

Q function: The expected total reward starting from state s,
taking an arbitrary action a and then following the policy π.

Q(s, a) = r(s, a) + γ E[Q(s ′, π(s ′))] (1)

Already in Bellman form!

Policy: The action maximizes the expected reward starting in s

π = arg max
a

Q(s, a). (2)

7 / 22

Q-Learning
Q function

Address discrete and continuous action spaces carefully and seperately

Be careful!

You need to solve an optimization problem!

π = arg max
a

Q(s, a).

For discrete and continuous action space, the structure of Q(s, a)
should be selected carefully to avoid advanced optimization

techniques.

8 / 22

Q-Learning
Q function

Discrete action space

Defining Q function in discrete case
The function takes s as the input and generates Q(s, a) for all
possible actions.
By feeding s the Q function is determined for all possible
actions
The actions are the indices for the vector.
Policy is the index in which Q(s, a) is maximized.

9 / 22

Q-Learning
Q function

Continuous action space

Defining Q function in continuous action space case

The Q function takes state and action as inputs and generates
a scalar output

The policy is obtained by mathematical optimization

Example: Quadratic Q

Q(s, a) =
[
s† a†

] [
gss gsa
g†

sa gaa

] [
s
a

]
(3)

The policy is

π = −g−1
aa g†

sa s. (4)

10 / 22

Q-Learning
Q function

Discrete vs. continuous

Discrete: Continuous:

- Feed s and generate Q(s, a)
for all actions

- Feed s and a and generate
Q(s, a) for that specific (s, a)

- Policy: by indexing - Policy: by analytical optimiza-
tion

- Arbitrary structure - A structure to be optimized
analytically e.g. quadratic

11 / 22

Q-Learning
Temporal Difference Learning

Definition

Our guess of Q function does not satisfy Bellman and there is an
error

e = r(s, a) + γ Q(s ′, π(s ′)) − Q(s, a). (5)

Temporal Difference (TD) learning:

Minimize the mean square error 1
2

∑T
t=1 e2

t .

12 / 22

Q-Learning
Temporal Difference Learning

Definition

How to build this error

e = r(s, a) + γ Q(s ′, π(s ′)) − Q(s, a).

For each sample point st , at , rt , st+1, do the following
Find Q(st , at)
Find Qtarget(rt , st+1) = rt + γ arga max Q(st+1, a)
Define the error et = Qtarget(rt , st+1) − Q(st , at).
Minimize the mean square error 1

2
∑T

t=1 e2
t .

13 / 22

Q-Learning
Temporal Difference Learning

Discrete action space

Define a network Q to take s and generate Q(s, a) for all
possible a
Assign a mean square error loss function for it

14 / 22

Q-Learning
Temporal Difference Learning

Continuous action space

Consider a quadratic Q function in s, a:

Q(s, a) =
[
s† a†

] [
gss gsa
g†

sa gaa

] [
s
a

]
= z†Gz

Minimize the mse by batch least squares

vecs(G) = (1
T

T∑
t=1

Ψt(Ψt − γΨt+1)†)−1(1
T

T∑
t=1

Ψtrt), (6)

where

z =
[

s
a

]
, Ψ = [z2

1 , 2z1z2, ..., 2z1zn, z2
2 , ..., 2z2zn, ..., z2

n]†.

It is called Least Squares Temporal Difference Learning (LSTD).

15 / 22

Q-Learning
Temporal Difference Learning

Discrete vs. continuous

Both minimize mse

Discrete: Continuous:

Numerically by a Gradient algo-
rithm

Analytically by batch least
squares

Pro: Can have arbitrary struc-
ture

Con: Should be quadratic

Con: Hyper parameters should
be set

Pro: No hyper parameter at all

16 / 22

Q-Learning
Exploration vs. Exploitation

How to select a in Q-learning?!??

Example: Eating in town
Exploitation: Go to your favourite restaurant
Exploration: Select a random restaurant

In RL
Exploitation only: will get stuck in a local optimum forever
Exploration only: will try only random things

It is important to balance Exploration vs. Exploitation

17 / 22

Q-Learning
Exploration vs. Exploitation

Discrete action space

How to generate a in discrete action space case?

Set a level 0 < ε < 1 and generate a random number r ∼ [0, 1]

a =
{

random action if r < ε,

arg maxa Q(s, a) Otherwise.

18 / 22

Q-Learning
Exploration vs. Exploitation

Continuous action space

How to generate a in continuous action space case?

Generate a random number r ∼ N (0, σ2)

a = arg max
a

Q(s, a) + r .

19 / 22

Q-Learning
Q-learning routine

Putting all together

We build/select a network to represent Q(s, a). Then, we iterate:
1 Collect data

Observe the state s and select the action a.
Apply a and observe r and the next state s ′.
Add s, a, r , s ′ to the history.

2 Update the parameter θ

We minimize the mean squared error using the history of data.

20 / 22

Q-Learning
Q-learning routine

Q-learning

Model-free
Based on Bellman’s principle of optimality
The first approach to try
Usually good results
Take a look at explanation and implementation on my Github,

Crash_course_on_RL/q_notebook.ipynb

21 / 22

https://github.com/FarnazAdib/Crash_course_on_RL/blob/master/q_notebook.ipynb

Q-Learning

Email your questions to

farnaz.adib.yaghmaie@liu.se

22 / 22

	Introduction
	Rules of the game

	Q function
	Definition
	Policy
	Summary
	Address discrete and continuous action spaces carefully and seperately
	Discrete action space
	Continuous action space
	Discrete vs. continuous

	Temporal Difference Learning
	Definition
	Discrete action space
	Continuous action space
	Discrete vs. continuous

	Exploration vs. Exploitation
	Discrete action space
	Continuous action space

	Q-learning routine
	

