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Q-Learning
Introduction

What is Q-learning

The most popular Dynamic Programming approach to solve an RL
problem

Is based on Bellman principle’s of optimality
Relies on definition of Quality function (also called
state-action value function)
In Q-learning, we learn the Q function
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Q-Learning
Introduction

Three main components of an RL agent

Policy: The agent’s decision
Value function: how good the agent does in a state
Model: The agent’s interpretation of the environment
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Q-Learning
Introduction

Rules of the game

Use Bellman’s principle of optimality and

estimate/evaluate the Quality function Q(s, a) for all s, a
choose a that has the best Quality in s.
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Q-Learning
Q function

Definition

Q function or state-action value function: The expected total
reward starting from state s, taking an arbitrary action a and then
following the policy π.

Q(s, a) = r(s, a) + γ E[Q(s ′, π(s ′))]
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Q-Learning
Q function

Policy

The action maximizes the expected total reward starting in s

π = arg max
a

Q(s, a).
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Q-Learning
Q function

Summary

Q function: The expected total reward starting from state s,
taking an arbitrary action a and then following the policy π.

Q(s, a) = r(s, a) + γ E[Q(s ′, π(s ′))] (1)

Already in Bellman form!

Policy: The action maximizes the expected reward starting in s

π = arg max
a

Q(s, a). (2)
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Q-Learning
Q function

Address discrete and continuous action spaces carefully and seperately

Be careful!

You need to solve an optimization problem!

π = arg max
a

Q(s, a).

For discrete and continuous action space, the structure of Q(s, a)
should be selected carefully to avoid advanced optimization

techniques.
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Q-Learning
Q function

Discrete action space

Defining Q function in discrete case
The function takes s as the input and generates Q(s, a) for all
possible actions.
By feeding s the Q function is determined for all possible
actions
The actions are the indices for the vector.
Policy is the index in which Q(s, a) is maximized.
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Q-Learning
Q function

Continuous action space

Defining Q function in continuous action space case

The Q function takes state and action as inputs and generates
a scalar output

The policy is obtained by mathematical optimization

Example: Quadratic Q

Q(s, a) =
[
s† a†

] [
gss gsa
g†

sa gaa

] [
s
a

]
(3)

The policy is

π = −g−1
aa g†

sa s. (4)
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Q-Learning
Q function

Discrete vs. continuous

Discrete: Continuous:

- Feed s and generate Q(s, a)
for all actions

- Feed s and a and generate
Q(s, a) for that specific (s, a)

- Policy: by indexing - Policy: by analytical optimiza-
tion

- Arbitrary structure - A structure to be optimized
analytically e.g. quadratic

11 / 22



Q-Learning
Temporal Difference Learning

Definition

Our guess of Q function does not satisfy Bellman and there is an
error

e = r(s, a) + γ Q(s ′, π(s ′)) − Q(s, a). (5)

Temporal Difference (TD) learning:

Minimize the mean square error 1
2

∑T
t=1 e2

t .
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Q-Learning
Temporal Difference Learning

Definition

How to build this error

e = r(s, a) + γ Q(s ′, π(s ′)) − Q(s, a).

For each sample point st , at , rt , st+1, do the following
Find Q(st , at)
Find Qtarget(rt , st+1) = rt + γ arga max Q(st+1, a)
Define the error et = Qtarget(rt , st+1) − Q(st , at).
Minimize the mean square error 1

2
∑T

t=1 e2
t .
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Q-Learning
Temporal Difference Learning

Discrete action space

Define a network Q to take s and generate Q(s, a) for all
possible a
Assign a mean square error loss function for it
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Q-Learning
Temporal Difference Learning

Continuous action space

Consider a quadratic Q function in s, a:

Q(s, a) =
[
s† a†

] [
gss gsa
g†

sa gaa

] [
s
a

]
= z†Gz

Minimize the mse by batch least squares

vecs(G) = ( 1
T

T∑
t=1

Ψt(Ψt − γΨt+1)†)−1( 1
T

T∑
t=1

Ψtrt), (6)

where

z =
[

s
a

]
, Ψ = [z2

1 , 2z1z2, ..., 2z1zn, z2
2 , ..., 2z2zn, ..., z2

n ]†.

It is called Least Squares Temporal Difference Learning (LSTD).

15 / 22



Q-Learning
Temporal Difference Learning

Discrete vs. continuous

Both minimize mse

Discrete: Continuous:

Numerically by a Gradient algo-
rithm

Analytically by batch least
squares

Pro: Can have arbitrary struc-
ture

Con: Should be quadratic

Con: Hyper parameters should
be set

Pro: No hyper parameter at all
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Q-Learning
Exploration vs. Exploitation

How to select a in Q-learning?!??

Example: Eating in town
Exploitation: Go to your favourite restaurant
Exploration: Select a random restaurant

In RL
Exploitation only: will get stuck in a local optimum forever
Exploration only: will try only random things

It is important to balance Exploration vs. Exploitation
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Q-Learning
Exploration vs. Exploitation

Discrete action space

How to generate a in discrete action space case?

Set a level 0 < ε < 1 and generate a random number r ∼ [0, 1]

a =
{

random action if r < ε,

arg maxa Q(s, a) Otherwise.
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Q-Learning
Exploration vs. Exploitation

Continuous action space

How to generate a in continuous action space case?

Generate a random number r ∼ N (0, σ2)

a = arg max
a

Q(s, a) + r .
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Q-Learning
Q-learning routine

Putting all together

We build/select a network to represent Q(s, a). Then, we iterate:
1 Collect data

Observe the state s and select the action a.
Apply a and observe r and the next state s ′.
Add s, a, r , s ′ to the history.

2 Update the parameter θ

We minimize the mean squared error using the history of data.
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Q-Learning
Q-learning routine

Q-learning

Model-free
Based on Bellman’s principle of optimality
The first approach to try
Usually good results
Take a look at explanation and implementation on my Github,

Crash_course_on_RL/q_notebook.ipynb
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https://github.com/FarnazAdib/Crash_course_on_RL/blob/master/q_notebook.ipynb
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Email your questions to

farnaz.adib.yaghmaie@liu.se
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