Q-Learning

Linköping University, Sweden
farnaz.adib.yaghmaie@liu.se

April 6, 2021
What is Q-learning

The most popular Dynamic Programming approach to solve an RL problem

- Is based on Bellman principle’s of optimality
- Relies on definition of Quality function (also called state-action value function)
- In Q-learning, we learn the Q function
Three main components of an RL agent

- Policy: The agent’s decision
- Value function: how good the agent does in a state
- Model: The agent’s interpretation of the environment
Use Bellman’s principle of optimality and

- estimate/evaluate the Quality function $Q(s, a)$ for all s, a
- choose a that has the best Quality in s.
Q function or state-action value function: The expected total reward starting from state s, taking an arbitrary action a and then following the policy π.

$$Q(s, a) = r(s, a) + \gamma \mathbb{E}[Q(s', \pi(s'))]$$
The action maximizes the expected total reward starting in s

$$\pi = \arg\max_a Q(s, a).$$
Q function: The expected total reward starting from state s, taking an arbitrary action a and then following the policy π.

$$Q(s, a) = r(s, a) + \gamma \mathbb{E}[Q(s', \pi(s'))]$$ \hfill (1)

Already in Bellman form!

Policy: The action maximizes the expected reward starting in s

$$\pi = \arg \max_a Q(s, a).$$ \hfill (2)
Be careful!

You need to solve an optimization problem!

$$\pi = \arg \max_a Q(s, a).$$

For discrete and continuous action space, the structure of $Q(s, a)$ should be selected carefully to avoid advanced optimization techniques.
Defining Q function in discrete case

- The function takes s as the input and generates $Q(s, a)$ for all possible actions.
- By feeding s the Q function is determined for all possible actions.
- The actions are the indices for the vector.
- Policy is the index in which $Q(s, a)$ is maximized.

![Diagram showing $Q(s, a)$ values]
Defining Q function in continuous action space case

- The Q function takes state and action as inputs and generates a scalar output.
- The policy is obtained by mathematical optimization.
- Example: Quadratic Q

$$Q(s, a) = \begin{bmatrix} s^\dagger \\ a^\dagger \end{bmatrix} \begin{bmatrix} g_{ss} & g_{sa} \\ g_{sa}^\dagger & g_{aa} \end{bmatrix} \begin{bmatrix} s \\ a \end{bmatrix}$$ \hspace{1cm} (3)$$

The policy is

$$\pi = -g_{aa}^{-1} g_{sa} s.$$ \hspace{1cm} (4)$$
Q-Learning

- **Q function**
 - Discrete vs. continuous

Discrete:
- Feed s and generate $Q(s, a)$ for **all** actions
- Policy: by indexing
- Arbitrary structure

Continuous:
- Feed s and a and generate $Q(s, a)$ for that **specific** (s, a)
- Policy: by analytical optimization
- A structure to be optimized analytically e.g. quadratic
Our guess of Q function does not satisfy Bellman and there is an error

$$e = r(s, a) + \gamma Q(s', \pi(s')) - Q(s, a).$$ \hspace{1cm} (5)

Temporal Difference (TD) learning:

Minimize the mean square error $\frac{1}{2} \sum_{t=1}^{T} e_t^2$.
How to build this error

\[e = r(s, a) + \gamma Q(s', \pi(s')) - Q(s, a). \]

For each sample point \(s_t, a_t, r_t, s_{t+1} \), do the following

- Find \(Q(s_t, a_t) \)
- Find \(Q_{target}(r_t, s_{t+1}) = r_t + \gamma \arg\max_a Q(s_{t+1}, a) \)
- Define the error \(e_t = Q_{target}(r_t, s_{t+1}) - Q(s_t, a_t) \)
- Minimize the mean square error \(\frac{1}{2} \sum_{t=1}^{T} e_t^2 \).
Define a network Q to take s and generate $Q(s, a)$ for all possible a

Assign a mean square error loss function for it
Consider a quadratic Q function in s, a:

$$Q(s, a) = \begin{bmatrix} s^\dagger & a^\dagger \end{bmatrix} \begin{bmatrix} g_{ss} & g_{sa} \\ g_{sa}^\dagger & g_{aa} \end{bmatrix} \begin{bmatrix} s \\ a \end{bmatrix} = z^\dagger Gz$$

Minimize the mse by batch least squares

$$vecs(G) = \left(\frac{1}{T} \sum_{t=1}^{T} \Psi_t (\Psi_t - \gamma \Psi_{t+1})^\dagger \right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} \Psi_t r_t \right), \quad (6)$$

where

$$z = \begin{bmatrix} s \\ a \end{bmatrix}, \quad \Psi = [z_1^2, 2z_1z_2, \ldots, 2z_1z_n, z_2^2, \ldots, 2z_2z_n, \ldots, z_n^2]^\dagger.$$

It is called Least Squares Temporal Difference Learning (LSTD).
Both minimize mse

Discrete:

Numerically by a Gradient algorithm

Pro: Can have arbitrary structure

Con: Hyper parameters should be set

Continuous:

Analytically by batch least squares

Con: Should be quadratic

Pro: No hyper parameter at all
How to select a in Q-learning?!

Example: Eating in town

- **Exploitation**: Go to your favourite restaurant
- **Exploration**: Select a random restaurant

In RL

- **Exploitation only**: will get stuck in a local optimum forever
- **Exploration only**: will try only random things

It is important to balance Exploration vs. Exploitation
How to generate a in discrete action space case?

Set a level $0 < \epsilon < 1$ and generate a random number $r \sim [0, 1]$

$$a = \begin{cases}
\text{random action} & \text{if } r < \epsilon, \\
\arg \max_a Q(s, a) & \text{Otherwise.}
\end{cases}$$
How to generate a in continuous action space case?

Generate a random number $r \sim \mathcal{N}(0, \sigma^2)$

$$a = \arg \max_a Q(s, a) + r.$$
Putting all together

We build/select a network to represent $Q(s, a)$. Then, we iterate:

1. Collect data
 - Observe the state s and select the action a.
 - Apply a and observe r and the next state s'.
 - Add s, a, r, s' to the history.

2. Update the parameter θ
 - We minimize the mean squared error using the history of data.
Q-learning

- Model-free
- Based on Bellman’s principle of optimality
- The first approach to try
- Usually good results
- Take a look at explanation and implementation on my Github,

Crash_course_on_RL/q_notebook.ipynb
Email your questions to

farnaz.adib.yaghmaie@liu.se