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L introduction

Paper Objective

m RL algorithms assume that the state variable is exactly
measurable.

m We assume that noisy measurements of state are available.

m Objective: to analyze DP-based RL routines when observation
noise is present.

3/15



Our recent paper on RL
LLinear Quardatic Problem

L Specification

m Dynamics:

Xk+1 = Axx + Buy + wy
Yk = Xk + Vi,

m State and action:

St € Rn,
us € RrR™

m Cost function (= negative of reward):

r(yks uk) = re = ¥ Ryyk + uj Ruux

where R, >0 and R, > 0.
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LLinear Quardatic Problem

L Specification

Solvability Criterion: Minimize V using m = Ky

+oo
V(yi, K) = E[Y_(r(ye, Kye) = A(K))lyi] (1)
t=k
where )\ is the average cost

MK) = Jim LE[Y” r(ye. Kyo) @)

t=1
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LLinear Quardatic Problem

LA few comments

m A # 0 when process and measurement noises appear
m V(yk, K) in (1) measures the quality of transient response

m The mentioned problem is equivalent to an LQR problem
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LAverag;e Q-learning

I—Configuring the Q network

The agents learn a quadratic @ function

Gi1 G
=l a[3 EJf]-re o

ak
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LAverag;e Q-learning

I—Defining the policy

Classical Q-learning;:

Greedy w.r.t. the last
function

T=K™*ly=—(Gl,) 7 G}

Average Q-learning:

Greedy w.r.t. the average of all
previous @-function

7F:K"+1yk:2‘;:1 _(é‘ég)_l é’ﬂyk

and a few more technical differ-
ences.
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LAverage Q-learning Algorithm

Compute the empirical average cost A = % Zthl re
Collect data

m Observe y; and select a;

m Apply a; and observe r¢, yit1.

m Add y:, at, i, yry1 to the history.

Estimated the kernel of @ by Least Squares Temporal
Difference (LSTD)

1< 1<
vees(G) = (& > V(W — Wt+1)T)71(7 > Wilce = M)
t=1 t=1

y 2 2 2
z= la , V= [z1,22120, ...,221 25, 25, ..., 2202, ...,z,,]T.

Update the controller gain
KI=37  —~(6,) 716,
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L Simulation results

m Dynamics:

1.01 0.01 O 1 00
Xk+1 = [0.01 1.01 0.01|xx+ |0 1 Of ug+ wy,
0 0.01 1.01 0 01
Yk = Xk + Vi,
W, =1, W, =I.

m Cost function (= negative of reward):

r(yi, ux) = 0.001ykTyk + ukTuk.
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L Simulation results

Algorithms to be compared

Average off-policy learning
Average Q-learning
Classical off-policy learning
Classical Q-learning
Model-building approach
Policy gradient

Analytical solution
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L Simulation results

L Results
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L Simulation results

L Results
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L Simulation results

L Results

Important observations

m Observation noise can deteriorate performance
m PG does not achieve good results

m Model-building approach is superb!

Our proposed algorithms produce more stable controller gains

m Performance of @ learning-types algorithms improve as the
trajectory length increases.
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Email your questions to

farnaz.adib.yaghmaie@lju.se
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