Time-optimal control of cranes subject to container height constraints

Filipe Barbosa and Johan Löfberg

Summary	
Objective:	Move the payload into and onto a o in minimum time.
Challenge:	Avoid colision with constainer stac
Trick:	Variable change in an optimal cont
Outcome:	Non-convex container avoidance contrainer become linear bound constraints.
Benefit:	No functional representation of the stack heights is required.

Original problem formulation

The nonlinear state-space representation in the original form is

$$\dot{x}(t) = f(t, x(t), u(t)),$$

where the state variables are

$$x_1 = x_p, \quad x_3 = y_p \quad x_5 = l, \quad x_7 = \theta,$$

 $x_2 = \dot{x}_p, \quad x_4 = \dot{y}_p, \quad x_6 = \dot{l}, \quad x_8 = \dot{\theta},$

and the original time-optimal control formulation is written as

minimize $T = \int_{0}^{t_f} 1 dt$ subject to $\dot{x}(t) = f(t, x(t), u(t))$ $0 \le y_p(t) \le h - s(x_p(t)) \leftarrow \text{avoidance constraints}$ (3) other constraints

container ship

cks. ntrol problem. constraints

ne container

Problem reformulation

1. Use spatial derivatives instead of temporal derivatives

$$\dot{x}_1 = \frac{dx_1}{dt} = x_2 \implies \frac{dt}{dx_1} = \frac{1}{x_2}, \ \frac{dx_2}{dx_1} = \dots$$
(4)

- **2.** New state vector is $x = [t, \dot{x}_p, y_p, \dot{y}_p, l, \dot{l}, \dot{l}]$
- 3. With $x_1(x_p) = t(x_p)$ as the cost function

minimize $J = t(x_{p_f})$ subjet to $x_2\dot{x}(x_p) = f(x_p, x(x_p), u(x_p))$ other constraints

Geometric constraints

1. Time discretization of the container avoidance constraint in (3) leads to

 $0 \le y_p(t^k) \le h - s(x_p(t^k)),$

where the container profile $s(x_p)$ is generally discontinuous, nonlinear and non-convex.

2. Spatial discretization of the container avoidance constraint in (5) leads to upper bound constraints for $y_p(x_p)$.

$$0 \le y_p(x_p^k) \le h - s(x_p^k).$$

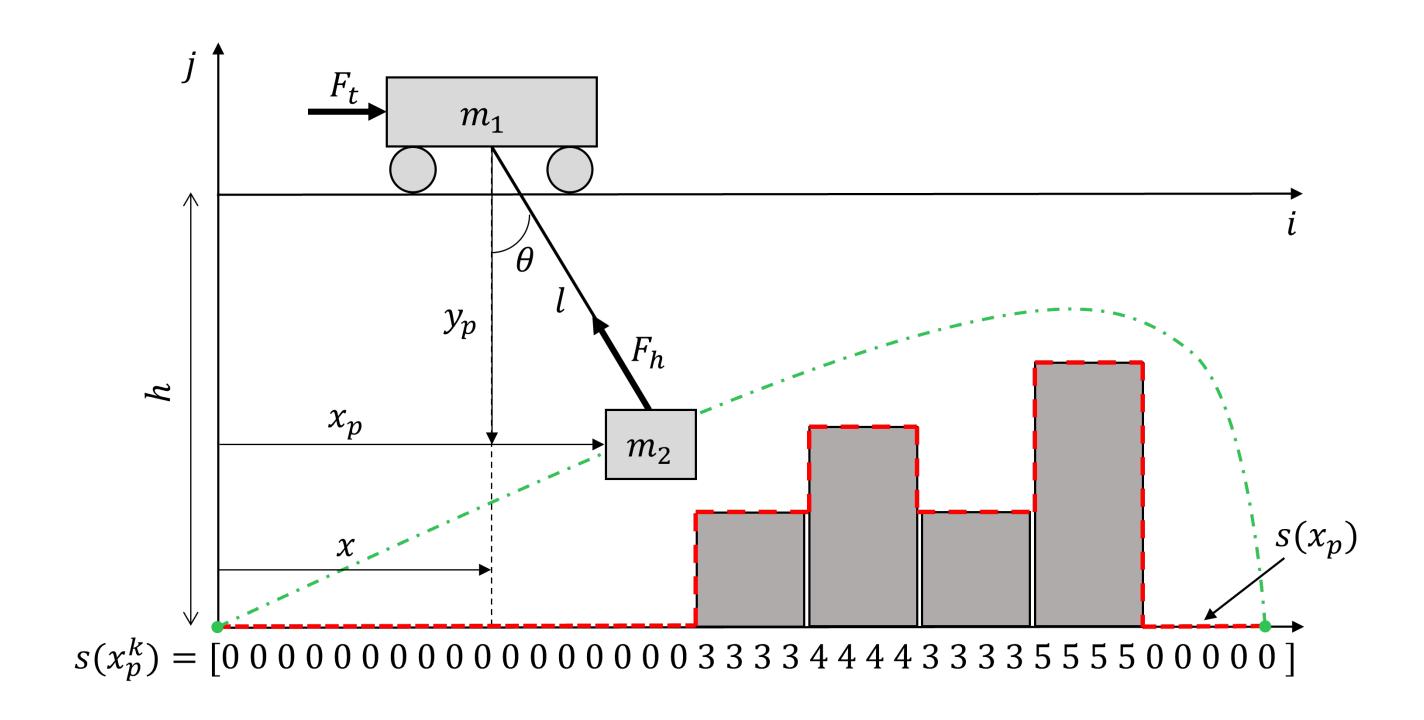
(2)

(1)

Note that we no longer need an explicit function $s(x_p)$, but simply function values which can be computed when setting up the numerical model.

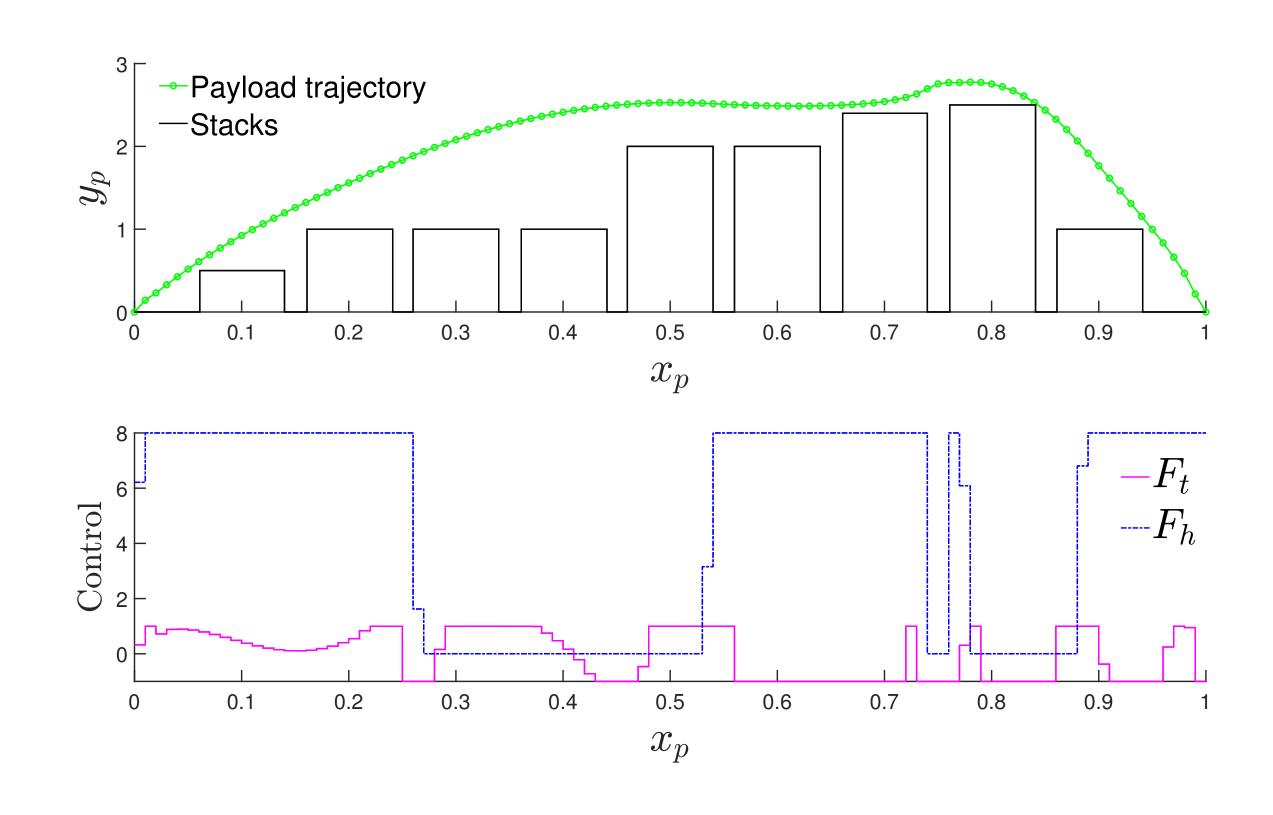
$$[\theta, \dot{ heta}]^T$$
.

$0 \le y_p(x_p) \le h - s(x_p) \leftarrow \text{container constraints}$ (5)



Simulation example

To ilustrate and validate the idea, a small scale scenario of stack configuration was simulated.



Future work

- tions.
- Apply the method in closed loop.
- Go beyond the point-mass assumption.

• Investigate energy consumption and energy optimal solu-

• More physical and geometric contraints to the setup.

