Time-optimal control of cranes subject to container height constraints

Filipe Barbosa and Johan Lofberg

Summary Problem reformulation

1. Use spatial derivatives instead of temporal derivatives
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Objective: Move the payload into and onto a container ship
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Challenge: Avoid colision with constainer stacks.
Trick: Variable change in an optimal control problem. 2. New state vector is z = [¢, &), y,. 9y, . 1, 6, 60]7.

Outcome: Non-convex container avoidance constraints

become linear bound constraints. 3. With z,(x,) =¢(z,) as the cost function

Benefit: No functional representation of the container
stack heights is required.
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minimize J = t(x),)

subjetto wyi(x,) = f(zp, 2(xp), ulzp))
0 <y,(z,) < h-s(z,) < container constraints (5)

other constraints

Geometric constraints

1. Time discretization of the container avoidance constraint in (3)
leads to

0 <p(t) < - s, (1)), X
where the container profile s(x,) 1s generally discontinuous,
nonlinear and non-convex.

Original problem formulation

The nonlinear state-space representation in the original form is

ZE(t) = f(tax(t)vu(t))v (1)

where the state variables are

2. Spatial discretization of the container avoidance constraint in
(5) leads to upper bound constraints for y,(x,).

0 < yp(xy) <h—s(x).

L1 = Lp, L3 =Yp 335:l, 337:(97
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Note that we no longer need an explicit function s(x, ), but sim-

and the original time-optimal control formulation is written as ply function values which can be computed when setting up the

t numerical model.

minimize 7 = 1dt
0

subject to &(t) = f(¢,z(t), u(t))
0 <y,(t) <h-s(z,(t)) < avoidance constraints (3)

other constraints
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s(x¥)=[00000000000000000333344443333555500000]

Simulation example

To 1lustrate and validate the idea, a small scale scenario of stack
configuration was simulated.
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Future work

» Investigate energy consumption and energy optimal solu-
tions.

« Apply the method in closed loop.
« Go beyond the point-mass assumption.
« More physical and geometric contraints to the setup.
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