Time-Optimal Cooperative Path Tracking for Multi-Robot Systems Hamed Haghshenas (hamed.haghshenas@liu.se), Anders Hansson, Mikael Norrlöf

Contributions

- Formulating the time-optimal cooperative path tracking problem as a convex optimization problem and subsequently as an SOCP.
- Proposing a new approach for obtaining internal force-free load distributions.

Time-optimal cooperative path tracking

Problem

- An object is rigidly grasped by multiple manipulators. The objective is to minimize the traversal time required to move the object with a desired orientation along a prescribed geometric path, where the path is given for the centre of mass of the object.
- The prescribed geometric path and the object's orientation are given as functions of the scalar path coordinate *s*.

Dynamics

Manipulator: $M_i(q_i)\ddot{q}_i + C_i(q_i, \dot{q}_i)\dot{q}_i + g$ $M_{O}(x_{O})\dot{v}_{O} + C_{O}(x_{O},\dot{x}_{O})v_{O}$ Object:

Relationship between forces h_o and h_i

$$h_o = G(s)h, \qquad h = [h_1^2]$$

 $h = G^{\dagger} h_o + V h_I$

Solution:

$$g_i(q_i) = \tau_i - J_i^T(q_i)h_i$$

$$h_i + g_o = h_o$$

 $[h_1^T,\ldots,h_N^T]^T$

Coupled dynamics

 $egin{aligned} & ilde{ au}(s) = ig(\widetilde{m}(s) + \widetilde{J}^T(s) G^\dagger(s) m_o(s) \ &+ \widetilde{g}(s) + \widetilde{J}^T(s) G^\dagger(s) g_o + \widetilde{J}^T(s) g_o + \widetilde$

Convex formulation

minimize $a(\cdot), b(\cdot), ilde{ au}(\cdot)$ subject to

$$\int_{0}^{1} \frac{1}{\sqrt{b(s)}} ds$$

$$\tilde{\tau}(s) = (\tilde{m}(s) + (\tilde{c}(s)) + (\tilde{c}(s)) + \tilde{g}(s) +$$

Figure 2: Joint velocities $\dot{q}_1(s)$ and $\dot{q}_2(s)$

Internal force-free load distributions

Problem: How to choose G^{\dagger} so that resulting force distribution from $h = G^{\dagger} h_0$ becomes free of internal forces. • In this approach, the object is divided into several parts and

$$(\tilde{c}(s))\ddot{s} + (\tilde{c}(s) + \tilde{J}^T(s)G^{\dagger}(s)c_o(s))\dot{s}^2 \\ \tilde{J}^T(s)V(s)h_I$$

the forces required to move the parts according to the desired motion of the object are computed. Then the pseudoinverse is chosen in such a way that it results in the same distribution of forces.

m_{o_1}/m	m_{O_2}/m	Minimal traversal time (sec)
0.15	0.85	0.855
0.35	0.65	0.637
0.55	0.45	0.684
0.85	0.15	1.001

Future work

- problem

 $=\dot{s}_T^2, \ b(s) \ge 0, \ b(s) \le \overline{b}(s),$ $\{ \overline{ au}_i(s), \quad i \in \mathcal{N}, \}$

• Segments are chosen in such a way that their centres of mass become the same as the object's centre of mass.

• The obtained pseudo-inverse of the grasp matrix is parameterized by coefficients that have the meaning of the inertial parameters of the considered parts of the object.

Table 1: Minimal traversal time for some values of the mass ratios.

• Incorporate constraints that do not preserve convexity • Devise a distributed algorithm for solving the optimization

• Extend the results to scenarios with nonconvex objects

LINKÖPING UNIVERSITY Division of Automatic Control