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Introduction
As marine vessels are becoming increasingly autonomous,

having access to accurate simulationmodels is turning into an

absolute necessity. This holds both for facilitation of develop-

ment and for achieving satisfactorymodel-based control. One

way to obtain such models is through system identification,

i.e., to build models based on measured data. The aim of this

poster is to summarize the Ph.D. project Ship Modelling for

Estimation and Control which deals with this issue.

Ship Modelling
Ship models are typically based on the equations of motion:

η̇ = J(η)ν,
MRBν̇ +MAν̇r +CRB(ν)ν +CA(νr)νr +D(νr)νr +F (νq)νq = τact.

• η and ν constitute (generalized) position and velocity.

• νr is relative velocity between ship and water.

• νq is relative velocity between ship and air.

• The second equation is nonlinear due to CRB, CA (Coriolis

forces) which give quadratic terms as well as D, F (hydrody-

namic/aerodynamic damping) which give quadratic terms with

absolute values.

Definition. A second-order modulus function is a function,

fsom ∶ Rn+p → Rm that can be written as

fsom(x,θ) = ΦT(x)θ,

where each element of the p×mmatrixΦ(x) is on one of the forms

xi, ∣xi∣, xixj, xi∣xj∣ for i, j ≤ n or zero and θ ∈ Rp is a vector of coef-

ficients.

Parameter Estimation

System:
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y(k) = x(k) + e(k).
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Estimator:
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Goal: Find a consistent estimator for θ when...

Scenario 1: E{v(k)} = 0.
Interpretation: Bursts of wind gusts/ocean currents.

Solution: Excitation offset and zero-mean instruments.

Scenario 2: E{v(k)} = v̄ and R(k) = R0.

Interpretation: Bursty wind/current with additional static com-

ponent and ship motion with fixed attitude.

Solution: Excitation offset, zero-mean instruments and auxil-

iary disturbance measurement, yv(k) = v(k) + ev(k).

Scenario 3: E{v(k)} = v̄ and R(k)measured.

Interpretation: Bursty wind/current with additional static com-

ponent and ship motion with varying attitude.

Solution: Excitation offset, zero-mean instruments and modi-

fied predictor

ŷ(k,θ) = ΦT
⎛
⎝
[y(k − 1) +R(k − 1)ρ

u(k − 1) ]
⎞
⎠
θ,

where both θ and ρ are estimated.

Remarks
1. The estimate ρ̂ contains information about the disturbances.

2. In order to uniquely identify properties regarding both wind

and currents, a mix of solutions is needed.

Experiment Design

• Most ships are unique (new model needed for each).

• Short commission times (few hours).

• Current solution: standard ship maneuvers.

Goal: Find u(k) which maximizes a scalar criterion of
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Challenge: Nonconvex problem (requires good initial guess).

Solution part 1:

1. Choose candidate signalsu1(k), ...,uQ(k) (standardmaneuvers).

2. Estimate Ḡ1, ..., ḠQ (information matrices) based on simulation

experiments with a nominal model.

3. Assume that u1(k), ...,uQ(k) are to be applied in sequence and

solve an optimization problem to find the information-optimal

mix, i.e., for how long they should be applied w.r.t. each other.

Solutionpart 2: Solve a lattice-basedmotion planning problem

minimize
{mk}M−1k=0 ,M

M−1
∑
k=0

J(mk)

s.t. x0 = xs, xM = xf ,

xk+1 = f(xk,mk),
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c(mk,xk) ∈ X free.

• The signals u1(k), ...,uQ(k), are used to formmotion primitives.

• The ratios found in Solution part 1 are respected by augmenting

the state vector with motion primitive counters.


