Improved experiment design for closed-loop identification of industrial robots

Stefanie A. Zimmermann ${ }^{1}$, Martin Enqvist ${ }^{1}$, Svante Gunnarsson ${ }^{1}$, Stig Moberg ${ }^{2}$, Mikael Norrlöf ${ }^{1,2}$

Linköping University; ${ }^{2}$ ABB AB

Introduction

Since the control system of an industrial robot often relies on models, the quality of the model is of high importance. Furthermore, a fast and easy-to-use process for finding the model parameters from a combination of pre-known information and experimental data is required.
This poster shows an approach for improving the experiment design by selecting the optimal combination of manipulator positions during the data collection. An optimization problem, which is based on the Fisher information matrix, is solved. It is shown that the parameter covariance is reduced by weighting the candidate positions.

Motivation

The identification of industrial robots is challenging, since a closed-loop system must be identified, and several nonlinearities are present. The experiment design problem aims to

- reduce the required experiment time,
- improve the model accuracy.

Nonlinear gray-box identification in frequency-domain ${ }^{[1]}$

1. Estimate non-parametric Frequency Response Functions (FRFs) $\hat{G}^{(i)}(l)$ in a number of robot positions.
2. Linearize the parametric gray-box robot model (see col. 2) in each of the robot positions, get parametric FRFs $\hat{G}^{(i)}(\theta)$.
3. Compute the error between $\hat{G}^{(i)}(l)$ and $\hat{G}^{(i)}(\theta)$, and optimize the parameter vector in order to minimize this error:

$$
\begin{gathered}
\hat{\theta}=\underset{\theta}{\arg \min } \sum_{i=1}^{Q_{c}} \sum_{l l=1}^{m_{i}}\left[\mathcal{E}^{(i)}(l, \theta)\right]^{T}\left[\Lambda_{0}\right]^{-1} \mathcal{E}^{(i)}(l, \theta) \\
\text { where } \mathcal{E}^{(i)}(l, \theta)=\hat{G}^{(i)}(l)-\hat{G}^{(i)}(\theta)
\end{gathered}
$$

Gray-box model:

- Known: rigid body parameters (dimensions, mass, inertia)
- Identified from measurements: elasticity, damping and friction parameters

An industrial robot.

A lumped parameter robot model.

Idea of improved experiment design ${ }^{[2]}$

1. Choose a set of candidate positions Q_{c}
2. Perform experiments in each position i, estimate the FRF and the its total variance $\Lambda_{0}^{(i)}$ (avg. over different periods and realizations)
3. Estimate the information obtained from each position:

$$
H_{i}=2 \operatorname{Re}\left\{\overline{\Psi^{(i)}\left(\theta_{0}\right)}\left[\Lambda_{0}^{(i)}\right]^{-1}\left[\Psi^{(i)}\left(\theta_{0}\right)\right]^{T}\right\}
$$

with the Jacobian $\left[\Psi^{(i)}\left(\theta_{0}\right)\right]^{T}=\frac{\delta G^{(i)}\left(\theta_{0}\right)}{\delta \theta}$, where $\hat{G}^{(i)}\left(\theta_{0}\right)$ are the parametric model FRFs, and θ_{0} the nominal parameters.
4. Solve optimization problem for finding the best combination of candidates:

$$
\begin{array}{ll}
\text { minimize } & \log \operatorname{det}\left[\sum_{i=1}^{Q_{c}} \lambda_{i} H_{i}\right] \\
\text { subject to } & \lambda \geq 0, \quad 1^{T} \lambda=1
\end{array}
$$

[1] E. Wernholt, S. Moberg, Nonlinear gray-box identification using local models applied to industrial robots, Automatica, Volume 47, Issue 4, 2011, Pages 650-660, ISSN ooo51098, https://doi.org/10.1016/j.automatica.2011.01.021
${ }^{[2]}$ E. Wernholt and J. Lofberg, Experiment design for identification of nonlinear gray-box models with application to industrial robots, 46th IEEE Conference on Decision and Control, 2007, pp. 5110-5116, doi: 10.1109/CDC.2007.4434059

- Uncertainty of the estimate θ_{8} can be reduced if the positions Q_{c} are weighted according to the optimization result λ (orange bars).
- Reducing the number of positions leads to increased parameter uncertainty and physically unreasonable values for several parameters (turquoise bars).

Challenges

- How to get good initial parameters θ_{0} ?
- Many experiments are needed for estimating the variance $\Lambda_{0}^{(2)}$ of the FRF estimate. Can simulated data be used?
- What if the information matrix is ill-conditioned (i.e. dominated by one parameter)?

Future work

- How to use the optimization result (i.e. λ)? \rightarrow Experiment time for each position vs. FRF-weighting
- How to validate the method? What measure should be used for judging if the experiment design is improved?
\rightarrow Parameter uncertainty vs. accuracy vs. experiment time
- How can regularization be used for obtaining a sub-set of Q_{c} that contains the best positions (instead of considering all candidate positions according to λ)?

LINKÖPING
UNIVERSITY

