Time-Optimal CooperativePath Tracking forMulti-Robot Systems
Hamed Haghshenas
Division of Automatic ControlDepartment of Electrical EngineeringLinköping University

Motion planning

Decoupled approach

- Path planning
- Task specifications
- Obstacle avoidance
- Other robots in a shared workspace
- Path tracking
- Dynamics
- Actuator constraints

Motion planning

Decoupled approach

- Path planning
- Task specifications
- Obstacle avoidance
- Other robots in a shared workspace
- Path tracking
- Dynamics
- Actuator constraints

- Assuming that a desired path is given, path tracking can be studied independently.

Time-optimal cooperative path tracking

Internal forces

- Infinite number of forces at grasping points
- A load distribution strategy
- Resulting interaction forces:
- Motion-inducing
- Internal forces
- Squeezing or pulling forces
- Do not contribute to motion of object
- Must be avoided

- Open problem: finding all internal force-free distributions
- Can appear in cooperative path tracking problem

1 Time-optimal cooperative path tracking (convex formulation)
2 Internal force-free load distributions
3 Conclusions and future work

1 Time-optimal cooperative path tracking (convex formulation)

Setup

- The prescribed geometric path and the object's orientation are given as functions of the scalar path coordinate s.

Pose of the i th end-effector:

$$
\begin{aligned}
& p_{i}(s)=p_{O}(s)+p_{i O}(s)=p_{O}(s)+R_{E_{i}}(s) p_{i O}^{E_{i}} \\
& \phi_{i}(s)=\phi_{O}(s)+\phi_{i O}
\end{aligned}
$$

$p_{i o}^{E_{i}}$ and $\phi_{i o}$: Constant distance and orientation offsets between the reference frames $\{O\}$ and $\left\{E_{i}\right\}$, respectively.

- $q_{i}(s)$: Using inverse kinematics

Joint velocities and accelerations:

$$
\begin{aligned}
& \dot{q}_{i}(s)=q_{i}^{\prime}(s) \dot{s} \\
& \ddot{q}_{i}(s)=q_{i}^{\prime}(s) \ddot{s}+q_{i}^{\prime \prime}(s) \dot{s}^{2}
\end{aligned}
$$

where $q_{i}^{\prime}(s)=\partial q_{i}(s) / \partial s, q_{i}^{\prime \prime}(s)=\partial^{2} q_{i}(s) / \partial s^{2}, \dot{s}=d s / d t$ and $\ddot{s}=d^{2} s / d t^{2}$.

Manipulator dynamics (i th manipulator)

Joint space model:

$$
M_{i}\left(q_{i}\right) \ddot{q}_{i}+C_{i}\left(q_{i}, \dot{q}_{i}\right) \dot{q}_{i}+g_{i}\left(q_{i}\right)=\tau_{i}-J_{i}^{T}\left(q_{i}\right) h_{i}
$$

$J_{i} \in \mathbb{R}^{6 \times n_{i}}$: Geometric Jacobian
$h_{i} \in \mathbb{R}^{6}$: Vector of generalized forces exerted by the i th end-effector on the object

$$
\tau_{i}(s)=m_{i}(s) \ddot{s}+c_{i}(s) \dot{s}^{2}+g_{i}(s)+J_{i}^{T}(s) h_{i}
$$

where

$$
\begin{aligned}
m_{i}(s) & =M_{i}\left(q_{i}(s)\right) q_{i}^{\prime}(s) \\
c_{i}(s) & =M_{i}\left(q_{i}(s)\right) q_{i}^{\prime \prime}(s)+C_{i}\left(q_{i}(s), q_{i}^{\prime}(s)\right) q_{i}^{\prime}(s)
\end{aligned}
$$

Object dynamics

Newton-Euler formulation:

$$
M_{O}\left(x_{O}\right) \dot{v}_{O}+C_{O}\left(x_{O}, \dot{x}_{O}\right) v_{O}+g_{O}=h_{O}
$$

$h_{O} \in \mathbb{R}^{6}$: Generalized forces acting on the object's centre of mass

$$
m_{O}(s) \ddot{s}+c_{O}(s) \dot{s}^{2}+g_{O}=h_{O}
$$

where

$$
\begin{aligned}
m_{O}(s)= & M_{O}\left(x_{O}(s)\right) T_{O}(s) x_{O}^{\prime}(s), \\
c_{O}(s)= & M_{O}\left(x_{O}(s)\right) \frac{\partial T_{O}(s)}{\partial s} x_{O}^{\prime}(s)+M_{O}\left(x_{O}(s)\right) T_{O}(s) x_{O}^{\prime \prime}(s) \\
& +C_{O}\left(x_{O}(s), x_{O}^{\prime}(s)\right) T_{O}(s) x_{O}^{\prime}(s), \\
T_{O}(s)= & {\left[\begin{array}{cc}
I_{3} & 0_{3 \times 3} \\
0_{3 \times 3} & T\left(\phi_{O}(s)\right)
\end{array}\right] . }
\end{aligned}
$$

Relationship between h_{o} and h_{i}

$$
h_{O}=G(s) h, \quad h=\left[h_{1}^{T}, \ldots, h_{N}^{T}\right]^{T}
$$

Solution:

$$
h=G^{\dagger} h_{O}+V h_{I},
$$

$G^{\dagger} \in \mathbb{R}^{6 N \times 6}$: A right inverse of G (pseudo-inverse)
$V \in \mathbb{R}^{6 N \times 6}$: A matrix whose columns span the null space of G $h_{I} \in \mathbb{R}^{6}$: Generally represents the vector of internal forces

- Use of a generic pseudo-inverse of G may lead to internal forces even if $h_{I}=0$.

Coupled dynamics

Dynamics of manipulators:

$$
\tilde{\tau}(s)=\tilde{m}(s) \ddot{s}+\tilde{c}(s) \dot{s}^{2}+\tilde{g}(s)+\tilde{J}^{T}(s) h
$$

Object dynamics:

$$
m_{O}(s) \ddot{s}+c_{O}(s) \dot{s}^{2}+g_{O}=h_{O}
$$

Relationship between h_{O} and h :

$$
h=G^{\dagger} h_{O}+V h_{I}
$$

Coupled dynamics:

$$
\begin{aligned}
\tilde{\tau}(s)= & \left(\tilde{m}(s)+\tilde{J}^{T}(s) G^{\dagger}(s) m_{O}(s)\right) \ddot{s} \\
& +\left(\tilde{c}(s)+\tilde{J}^{T}(s) G^{\dagger}(s) c_{O}(s)\right) \dot{s}^{2} \\
& +\tilde{g}(s)+\tilde{J}^{T}(s) G^{\dagger}(s) g_{O}+\tilde{J}^{T}(s) V(s) h_{I}
\end{aligned}
$$

Convex formulation

Optimization variables:

$$
a(s)=\ddot{s}(t), \quad b(s)=\dot{s}(t)^{2}, \quad b^{\prime}(s)=2 a(s) .
$$

The additional constraint follows from:

$$
\begin{aligned}
& \dot{b}(s(t))=b^{\prime}(s) \dot{s}(t) \\
& \dot{b}(s(t))=\frac{d\left(\dot{s}(t)^{2}\right)}{d t}=2 \ddot{s}(t) \dot{s}(t)=2 a(s) \dot{s}(t)
\end{aligned}
$$

Convex formulation of the problem of interest

$$
\begin{array}{cl}
\underset{a(\cdot), b(\cdot), \tilde{\tau}(\cdot)}{\operatorname{minimize}} & \int_{0}^{1} \frac{1}{\sqrt{b(s)}} d s \\
\text { subject to } & \begin{aligned}
\tilde{\tau}(s)= & \left(\tilde{m}(s)+\tilde{J}^{T}(s) G^{\dagger}(s) m_{O}(s)\right) a(s) \\
& +\left(\tilde{c}(s)+\tilde{J}^{T}(s) G^{\dagger}(s) c_{O}(s)\right) b(s) \\
& +\tilde{g}(s)+\tilde{J}^{T}(s) G^{\dagger}(s) g_{O}+\tilde{J}^{T}(s) V(s) h_{I} \\
& \\
& b(0)=\dot{s}_{0}^{2} \\
& b(1)=\dot{s}_{T}^{2} \\
& b(s) \geq 0 \\
& b(s) \leq \bar{b}(s) \\
& b^{\prime}(s)=2 a(s) \\
& \tau_{i}(s) \leq \tau_{i}(s) \leq \bar{\tau}_{i}(s), \quad i \in \mathcal{N} \\
& \forall s \in[0,1]
\end{aligned}
\end{array}
$$

Numerical approach

- Direct transcription method
- A large sparse optimization problem
- Can be transformed into an SOCP
- MOSEK, SeDuMi

Numerical simulation

2 Internal force-free load distributions

Problem

- How to choose G^{\dagger} so that resulting force distribution from $h=G^{\dagger} h_{O}$ becomes free of internal forces.

Idea behind the approach

- Object is divided into two parts, each part grasped by one of manipulators
- Infinitesimal distance between pieces, no exchange of forces

Idea behind the approach

- Each segment must to be moved in the same way that the corresponding part of the object would move in the cooperative case.

Idea behind the approach

- Once the desired motion of each segment is specified, the forces \bar{h}_{i} required to fulfill the motion can be obtained.
- No internal forces by design

Idea behind the approach

- Employing the forces \bar{h}_{i} in the cooperative case will not result in internal forces.
- Imposed kinematic constraints in both cases are the same.
- Inertial parameters of the segments together are the same as the inertial parameters of the whole object.

The pseudo-inverse G^{\star}

Solution:

$$
G_{i}^{\star}=\left[\begin{array}{cc}
\frac{m_{O_{i}}}{m} I_{3} & 0_{3 \times 3} \\
-\frac{m_{O_{i}}}{m} S\left(p_{i o}\right) & I_{O_{i}} I_{O}^{-1}
\end{array}\right],
$$

if

$$
I_{O_{i}}=\lambda_{i} I_{O}, \quad i \in\{1,2\}
$$

where $\lambda_{i}, i \in\{1,2\}$ are some positive coefficients with $\lambda_{1}+\lambda_{2}=1$.
Three-dimensional convex objects with uniform mass density:

$$
\begin{aligned}
& \lambda_{1}=\left(\frac{m_{O_{1}}}{m}\right)^{\frac{5}{3}}, \\
& \lambda_{2}=1-\left(\frac{m_{O_{1}}}{m}\right)^{\frac{5}{3}} .
\end{aligned}
$$

Numerical simulation

$m_{O_{1}} / m$	$m_{\mathrm{O}_{2}} / m$	Minimal traversal time (sec)
0	1	1.408
0.15	0.85	0.855
0.25	0.75	0.714
0.35	0.65	0.637
0.45	0.55	0.646
0.5	0.5	0.661
0.55	0.45	0.684
0.65	0.35	0.751
0.75	0.25	0.847
0.85	0.15	1.001
1	0	1.611

3 Conclusions and future work

Conclusions and future work

Conclusions:

- Formulating the time-optimal cooperative path tracking problem as a convex optimization problem and subsequently as an SOCP
- Proposing a new approach for obtaining internal force-free load distributions

Future work:

- Incorporate constraints that do not preserve convexity
- Incorporation of the freedom in the choice of the parameters of the pseudo-inverse as optimization variables
- Extend the results to scenarios with nonconvex objects

Thank you for listening! hamed.haghshenas@liu.se

www.liu.se

