## Time-Optimal Cooperative Path Tracking for Multi-Robot Systems

Hamed Haghshenas

Division of Automatic Control Department of Electrical Engineering Linköping University



1

## Motion planning

#### Decoupled approach

- Path planning
  - Task specifications
  - Obstacle avoidance
  - $\circ~$  Other robots in a shared work space
- Path tracking
  - Dynamics
  - $\circ~$  Actuator constraints





## Motion planning

#### Decoupled approach

- Path planning
  - Task specifications
  - Obstacle avoidance
  - $\circ~$  Other robots in a shared work space
- Path tracking
  - $\circ$  Dynamics
  - $\circ$  Actuator constraints







### Time-optimal cooperative path tracking





### Internal forces

- Infinite number of forces at grasping points
- A load distribution strategy
- Resulting interaction forces:
  - Motion-inducing
  - Internal forces
    - Squeezing or pulling forces
    - Do not contribute to motion of object
    - Must be avoided
- Open problem: finding all internal force-free distributions
- Can appear in cooperative path tracking problem





## 1 Time-optimal cooperative path tracking (convex formulation)

- 2 Internal force-free load distributions
- 3 Conclusions and future work



## 1 Time-optimal cooperative path tracking (convex formulation)

- 2 Internal force-free load distributions
- 3 Conclusions and future work



### Setup

• The prescribed geometric path and the object's orientation are given as functions of the scalar path coordinate s.





Pose of the *i*th end-effector:

$$p_i(s) = p_O(s) + p_{iO}(s) = p_O(s) + R_{E_i}(s)p_{iO}^{E_i},$$
  
$$\phi_i(s) = \phi_O(s) + \phi_{iO}.$$

 $p_{iO}^{E_i}$  and  $\phi_{iO}$ : Constant distance and orientation offsets between the reference frames  $\{O\}$  and  $\{E_i\}$ , respectively.

•  $q_i(s)$ : Using inverse kinematics

Joint velocities and accelerations:

$$\begin{aligned} \dot{q}_i(s) &= q_i'(s)\dot{s}, \\ \ddot{q}_i(s) &= q_i'(s)\ddot{s} + q_i''(s)\dot{s}^2, \end{aligned}$$

where  $q'_i(s) = \partial q_i(s)/\partial s$ ,  $q''_i(s) = \partial^2 q_i(s)/\partial s^2$ ,  $\dot{s} = ds/dt$  and  $\ddot{s} = d^2s/dt^2$ .



#### Manipulator dynamics (*i*th manipulator)

#### Joint space model:

$$M_{i}(q_{i})\ddot{q}_{i} + C_{i}(q_{i},\dot{q}_{i})\dot{q}_{i} + g_{i}(q_{i}) = \tau_{i} - J_{i}^{T}(q_{i})h_{i},$$

$$\begin{split} J_i \in \mathbb{R}^{6 \times n_i}: \text{ Geometric Jacobian} \\ h_i \in \mathbb{R}^6: \text{ Vector of generalized forces exerted by the } i\text{th} \\ \text{ end-effector on the object} \end{split}$$

$$\tau_i(s) = m_i(s)\ddot{s} + c_i(s)\dot{s}^2 + g_i(s) + J_i^T(s)h_i,$$

where

$$m_i(s) = M_i(q_i(s))q'_i(s),$$
  

$$c_i(s) = M_i(q_i(s))q''_i(s) + C_i(q_i(s), q'_i(s))q'_i(s)$$



### Object dynamics

#### Newton-Euler formulation:

$$M_{O}(x_{O})\dot{v}_{O} + C_{O}(x_{O}, \dot{x}_{O})v_{O} + g_{O} = h_{O},$$

 $h_O \in \mathbb{R}^6$ : Generalized forces acting on the object's centre of mass

$$m_O(s)\ddot{s} + c_O(s)\dot{s}^2 + g_O = h_O,$$

where

$$\begin{split} m_{O}(s) &= M_{O}(x_{O}(s))T_{O}(s)x'_{O}(s),\\ c_{O}(s) &= M_{O}(x_{O}(s))\frac{\partial T_{O}(s)}{\partial s}x'_{O}(s) + M_{O}(x_{O}(s))T_{O}(s)x''_{O}(s) \\ &+ C_{O}(x_{O}(s), x'_{O}(s))T_{O}(s)x'_{O}(s),\\ T_{O}(s) &= \begin{bmatrix} I_{3} & 0_{3\times 3} \\ 0_{3\times 3} & T(\phi_{O}(s)) \end{bmatrix}. \end{split}$$



#### Relationship between $h_o$ and $h_i$

$$h_O = G(s)h, \qquad h = [h_1^T, \dots, h_N^T]^T$$

Solution:

$$h = G^{\dagger} h_O + V h_I,$$



 $G^{\dagger} \in \mathbb{R}^{6N \times 6}$ : A right inverse of G (pseudo-inverse)  $V \in \mathbb{R}^{6N \times 6}$ : A matrix whose columns span the null space of G $h_I \in \mathbb{R}^6$ : Generally represents the vector of internal forces

• Use of a generic pseudo-inverse of G may lead to internal forces even if  $h_I = 0$ .



## Coupled dynamics

Dynamics of manipulators:

$$\tilde{\tau}(s) = \tilde{m}(s)\ddot{s} + \tilde{c}(s)\dot{s}^2 + \tilde{g}(s) + \tilde{J}^T(s)h$$

Object dynamics:

$$m_O(s)\ddot{s} + c_O(s)\dot{s}^2 + g_O = h_O$$

Relationship between  $h_O$  and h:

$$h = G^{\dagger} h_O + V h_I$$

Coupled dynamics:

$$\tilde{\tau}(s) = \left(\tilde{m}(s) + \tilde{J}^{T}(s)G^{\dagger}(s)m_{O}(s)\right)\ddot{s} \\ + \left(\tilde{c}(s) + \tilde{J}^{T}(s)G^{\dagger}(s)c_{O}(s)\right)\dot{s}^{2} \\ + \tilde{g}(s) + \tilde{J}^{T}(s)G^{\dagger}(s)g_{O} + \tilde{J}^{T}(s)V(s)h$$



#### Convex formulation

#### **Optimization variables:**

$$a(s) = \ddot{s}(t), \quad b(s) = \dot{s}(t)^2, \quad b'(s) = 2a(s).$$

The additional constraint follows from:

$$\begin{split} \dot{b}(s(t)) &= b'(s)\dot{s}(t), \\ \dot{b}(s(t)) &= \frac{d(\dot{s}(t)^2)}{dt} = 2\ddot{s}(t)\dot{s}(t) = 2a(s)\dot{s}(t). \end{split}$$



#### Convex formulation of the problem of interest

$$\begin{array}{ll} \underset{a(\cdot), b(\cdot), \tilde{\tau}(\cdot)}{\text{minimize}} & \int_{0}^{1} \frac{1}{\sqrt{b(s)}} ds \\ \text{subject to} & \tilde{\tau}(s) = \left(\tilde{m}(s) + \tilde{J}^{T}(s)G^{\dagger}(s)m_{O}(s)\right)a(s) \\ & + \left(\tilde{c}(s) + \tilde{J}^{T}(s)G^{\dagger}(s)c_{O}(s)\right)b(s) \\ & + \tilde{g}(s) + \tilde{J}^{T}(s)G^{\dagger}(s)g_{O} + \tilde{J}^{T}(s)V(s)h_{I}, \\ b(0) = \dot{s}_{0}^{2}, \\ b(1) = \dot{s}_{T}^{2}, \\ b(s) \geq 0, \\ b(s) \geq 0, \\ b(s) \leq \bar{b}(s), \\ b'(s) = 2a(s), \\ & \underline{\tau}_{i}(s) \leq \tau_{i}(s) \leq \overline{\tau}_{i}(s), \quad i \in \mathcal{N}, \\ \forall s \in [0, 1]. \end{array}$$



#### Numerical approach

- Direct transcription method
- A large sparse optimization problem
- Can be transformed into an SOCP
- MOSEK, SeDuMi



#### Numerical simulation













#### 1 Time-optimal cooperative path tracking (convex formulation)

- 2 Internal force-free load distributions
- 3 Conclusions and future work



#### Problem

• How to choose  $G^{\dagger}$  so that resulting force distribution from  $h = G^{\dagger}h_O$  becomes free of internal forces.





- Object is divided into two parts, each part grasped by one of manipulators
- Infinitesimal distance between pieces, no exchange of forces





• Each segment must to be moved in the same way that the corresponding part of the object would move in the cooperative case.





- Once the desired motion of each segment is specified, the forces  $\bar{h}_i$  required to fulfill the motion can be obtained.
- No internal forces by design





- Employing the forces  $\bar{h}_i$  in the cooperative case will not result in internal forces.
  - Imposed kinematic constraints in both cases are the same.
  - Inertial parameters of the segments together are the same as the inertial parameters of the whole object.





### The pseudo-inverse $G^{\star}$

#### ${\small Solution:}$

$$G_i^{\star} = \begin{bmatrix} \frac{m_{O_i}}{m} I_3 & 0_{3\times 3} \\ -\frac{m_{O_i}}{m} S(p_{iO}) & I_{O_i} I_O^{-1} \end{bmatrix},$$

if

$$I_{O_i} = \lambda_i I_O, \quad i \in \{1, 2\},$$

where  $\lambda_i, i \in \{1, 2\}$  are some positive coefficients with  $\lambda_1 + \lambda_2 = 1$ .

Three-dimensional convex objects with uniform mass density:

$$\lambda_1 = \left(\frac{m_{O_1}}{m}\right)^{\frac{5}{3}},\\ \lambda_2 = 1 - \left(\frac{m_{O_1}}{m}\right)^{\frac{5}{3}}$$



## Numerical simulation

| $m_{O_1}/m$ | $m_{O_2}/m$ | Minimal traversal time (sec) |
|-------------|-------------|------------------------------|
| 0           | 1           | 1.408                        |
| 0.15        | 0.85        | 0.855                        |
| 0.25        | 0.75        | 0.714                        |
| 0.35        | 0.65        | 0.637                        |
| 0.45        | 0.55        | 0.646                        |
| 0.5         | 0.5         | 0.661                        |
| 0.55        | 0.45        | 0.684                        |
| 0.65        | 0.35        | 0.751                        |
| 0.75        | 0.25        | 0.847                        |
| 0.85        | 0.15        | 1.001                        |
| 1           | 0           | 1.611                        |



#### Time-optimal cooperative path tracking (convex formulation)

- 2 Internal force-free load distributions
- 3 Conclusions and future work



## Conclusions and future work

#### **Conclusions:**

- Formulating the time-optimal cooperative path tracking problem as a convex optimization problem and subsequently as an SOCP
- Proposing a new approach for obtaining internal force-free load distributions

#### Future work:

- Incorporate constraints that do not preserve convexity
- Incorporation of the freedom in the choice of the parameters of the pseudo-inverse as optimization variables
- Extend the results to scenarios with nonconvex objects



# Thank you for listening!

hamed.haghshenas@liu.se

www.liu.se

