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Motion planning

Decoupled approach

• Path planning

◦ Task speci�cations

◦ Obstacle avoidance

◦ Other robots in a shared workspace

• Path tracking

◦ Dynamics

◦ Actuator constraints

■ Assuming that a desired path is given, path tracking can be

studied independently.
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Time-optimal cooperative path tracking
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Internal forces

• In�nite number of forces at

grasping points

• A load distribution strategy

• Resulting interaction forces:

◦ Motion-inducing
◦ Internal forces

� Squeezing or pulling forces

� Do not contribute to

motion of object

� Must be avoided

• Open problem: �nding all

internal force-free distributions

• Can appear in cooperative path

tracking problem

hO

h1

h2



1 Time-optimal cooperative path tracking
(convex formulation)

2 Internal force-free load distributions
3 Conclusions and future work



1 Time-optimal cooperative path tracking
(convex formulation)

2 Internal force-free load distributions
3 Conclusions and future work



November 15, 2021 6

Setup

• The prescribed geometric path and the object's orientation

are given as functions of the scalar path coordinate s.
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Pose of the ith end-e�ector:

pi(s) = pO(s) + piO(s) = pO(s) +REi
(s)p

Ei
iO,

ϕi(s) = ϕO(s) + ϕiO.

p
Ei
iO and ϕiO: Constant distance and orientation o�sets between

the reference frames {O} and {Ei}, respectively.

• qi(s): Using inverse kinematics

Joint velocities and accelerations:

q̇i(s) = q′i(s)ṡ,

q̈i(s) = q′i(s)s̈+ q′′i (s)ṡ
2,

where q′i(s) = ∂qi(s)/∂s, q
′′
i (s) = ∂2qi(s)/∂s

2, ṡ = ds/dt and
s̈ = d2s/dt2.
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Manipulator dynamics (ith manipulator)

Joint space model:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi − JT
i (qi)hi,

Ji ∈ R6×ni : Geometric Jacobian

hi ∈ R6: Vector of generalized forces exerted by the ith
end-e�ector on the object

τi(s) = mi(s)s̈+ ci(s)ṡ
2 + gi(s) + JT

i (s)hi,

where

mi(s) = Mi(qi(s))q
′
i(s),

ci(s) = Mi(qi(s))q
′′
i (s) + Ci(qi(s), q

′
i(s))q

′
i(s).
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Object dynamics
Newton-Euler formulation:

MO(xO)v̇O + CO(xO, ẋO)vO + gO = hO,

hO ∈ R6: Generalized forces acting on the object's centre of mass

mO(s)s̈+ cO(s)ṡ
2 + gO = hO,

where

mO(s) = MO(xO(s))TO(s)x
′
O(s),

cO(s) = MO(xO(s))
∂TO(s)

∂s
x′O(s) +MO(xO(s))TO(s)x

′′
O(s)

+ CO(xO(s), x
′
O(s))TO(s)x

′
O(s),

TO(s) =

[
I3 03×3

03×3 T (ϕO(s))

]
.
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Relationship between hO and hi

hO = G(s)h, h = [hT1 , . . . , h
T
N ]T

Solution:

h = G†hO + V hI ,
hO

h1

h2

G† ∈ R6N×6: A right inverse of G (pseudo-inverse)

V ∈ R6N×6: A matrix whose columns span the null space of G
hI ∈ R6: Generally represents the vector of internal forces

• Use of a generic pseudo-inverse of G may lead to internal

forces even if hI = 0.
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Coupled dynamics

Dynamics of manipulators:

τ̃(s) = m̃(s)s̈+ c̃(s)ṡ2 + g̃(s) + J̃T (s)h

Object dynamics:

mO(s)s̈+ cO(s)ṡ
2 + gO = hO

Relationship between hO and h:

h = G†hO + V hI

Coupled dynamics:

τ̃(s) =
(
m̃(s) + J̃T (s)G†(s)mO(s)

)
s̈

+
(
c̃(s) + J̃T (s)G†(s)cO(s)

)
ṡ2

+ g̃(s) + J̃T (s)G†(s)gO + J̃T (s)V (s)hI
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Convex formulation

Optimization variables:

a(s) = s̈(t), b(s) = ṡ(t)2, b′(s) = 2a(s).

The additional constraint follows from:

ḃ(s(t)) = b′(s)ṡ(t),

ḃ(s(t)) =
d(ṡ(t)2)

dt
= 2s̈(t)ṡ(t) = 2a(s)ṡ(t).
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Convex formulation of the problem of interest

minimize
a(·), b(·), τ̃(·)

∫ 1

0

1√
b(s)

ds

subject to τ̃(s) =
(
m̃(s) + J̃T (s)G†(s)mO(s)

)
a(s)

+
(
c̃(s) + J̃T (s)G†(s)cO(s)

)
b(s)

+ g̃(s) + J̃T (s)G†(s)gO + J̃T (s)V (s)hI ,

b(0) = ṡ20,

b(1) = ṡ2T ,

b(s) ≥ 0,

b(s) ≤ b(s),

b′(s) = 2a(s),

τ i(s) ≤ τi(s) ≤ τ i(s), i ∈ N ,

∀s ∈ [0, 1].
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Numerical approach

• Direct transcription method

• A large sparse optimization problem

■ Can be transformed into an SOCP

■ MOSEK, SeDuMi
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Numerical simulation

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X-coordinate (m)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y
-c

o
o

rd
in

a
te

 (
m

)

desired path for centre of mass

posture of the first robot

posture of the second robot

position of the first end-effector

position of the second end-effector



November 15, 2021 16



November 15, 2021 17



1 Time-optimal cooperative path tracking
(convex formulation)

2 Internal force-free load distributions
3 Conclusions and future work



November 15, 2021 19

Problem

• How to choose G† so that resulting force distribution from

h = G†hO becomes free of internal forces.

hO

h1

h2

pOi

pOf

pO

Cooperative case:
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Idea behind the approach
• Object is divided into two parts, each part grasped by one of

manipulators
• In�nitesimal distance between pieces, no exchange of forces

h̄1

h̄2

pOi

pOf
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Idea behind the approach
• Each segment must to be moved in the same way that the

corresponding part of the object would move in the

cooperative case.

h̄1

h̄2

pOi

pOf
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Idea behind the approach
• Once the desired motion of each segment is speci�ed, the

forces h̄i required to ful�ll the motion can be obtained.
• No internal forces by design

h̄1

h̄2

pOi

pOf
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Idea behind the approach
• Employing the forces h̄i in the cooperative case will not result
in internal forces.

◦ Imposed kinematic constraints in both cases are the same.

◦ Inertial parameters of the segments together are the same as

the inertial parameters of the whole object.

h̄1

h̄2

pOi

pOf
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The pseudo-inverse G⋆

Solution:

G⋆
i =

[
mOi
m I3 03×3

−mOi
m S(piO) IOi

I−1
O

]
,

if

IOi
= λiIO, i ∈ {1, 2},

where λi, i ∈ {1, 2} are some positive coe�cients with λ1 + λ2 = 1.

Three-dimensional convex objects with uniform mass density:

λ1 =
(mO1

m

) 5
3 ,

λ2 = 1−
(mO1

m

) 5
3 .
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Numerical simulation

mO1
/m mO2

/m Minimal traversal time (sec)

0 1 1.408

0.15 0.85 0.855

0.25 0.75 0.714

0.35 0.65 0.637

0.45 0.55 0.646

0.5 0.5 0.661

0.55 0.45 0.684

0.65 0.35 0.751

0.75 0.25 0.847

0.85 0.15 1.001

1 0 1.611
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Conclusions and future work

Conclusions:

• Formulating the time-optimal cooperative path tracking

problem as a convex optimization problem and subsequently

as an SOCP

• Proposing a new approach for obtaining internal force-free

load distributions

Future work:

• Incorporate constraints that do not preserve convexity

• Incorporation of the freedom in the choice of the parameters

of the pseudo-inverse as optimization variables

• Extend the results to scenarios with nonconvex objects
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