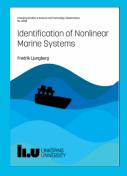
Identification of Nonlinear Marine Systems

Fredrik Ljungberg



Why do we want automated ships?

- Safety
 - ~90 % of ship accidents are caused by human error*
- Cutting costs
 - ~80 % of the volume of international trade in goods is carried by sea**
- Sustainability
 - ~3 % of global GHG emissions are from shipping***

Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center

*Annual Overview of Marine Casualties and Incidents 2021, EMSA

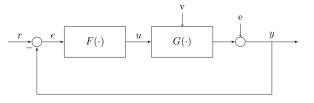
**Review of Martime Transport 2021, UN

***Fourth Greenhouse Gas Study, 2020, IMO

Why are models needed?

- Model-based control
- Simplified development
- Other driver-assistance functionality

Image courtesy of ABB



Ship commissioning

Experiments for:

- Controller tuning
- Testing of system functionality
- Data collection for system identification

Challenges:

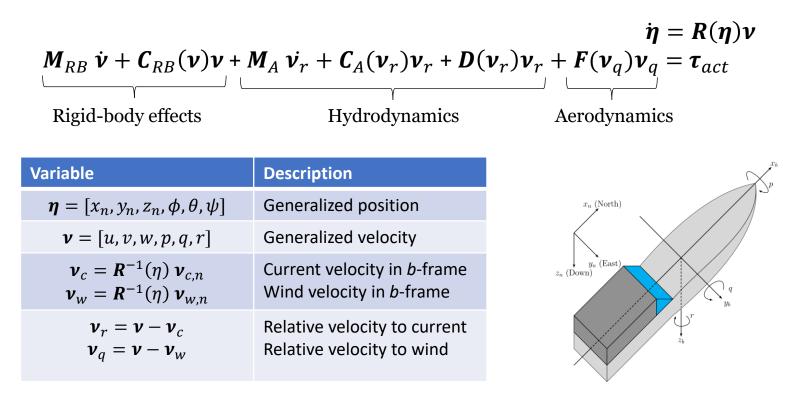
- Associated with high costs
 - \rightarrow Experiment time needs to be kept short
- Planned well in advance
 - \rightarrow Weather conditions can vary

Circle test

Zig-zag maneuver

Ship modelling

Disturbed equations of motion



Problem formulation

Estimate the parameter vector $\boldsymbol{\theta}_0$ in

$$\mathbf{x}(k+1) = \mathbf{f}_{SOM} \left(\begin{bmatrix} \mathbf{x}(k) + \mathbf{R}(k)\mathbf{v}(k) \\ \mathbf{u}(k) \end{bmatrix}, \mathbf{\theta}_0 \right) + \mathbf{w}(k)$$
$$\mathbf{y}(k) = \mathbf{x}(k) + \mathbf{e}(k)$$
$$\mathbf{Y}_R(k) = \mathbf{R}(k) + \mathbf{E}_R(k)$$

- $f_{SOM}(\cdot)$ is a second-order modulus function
- $e(k), E_R(k), v(k)$ and w(k) are disturbance signals
- u(k) is the control signal
- x(k) is the system state
- R(k) is a time-varying matrix
- $\mathbf{y}(k)$ and $\mathbf{Y}_{\mathrm{R}}(k)$ are measured signals

Definition: A second-order modulus function is a function f_{SOM} : $\mathbb{R}^{n_x+n_\theta} \to \mathbb{R}^{n_f}$ that can be written as

$$\boldsymbol{f}_{SOM}(\boldsymbol{x},\boldsymbol{\theta}) = \boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{x}) \boldsymbol{\theta}$$

where each element of the $n_{\theta} \times n_f$ matrix $\Phi(\mathbf{x})$ is on one of the forms $x_i, |x_i|, x_i x_j$ or $x_i |x_j|$ for $i, j \le n_x$ or zero and $\theta \in \mathbb{R}^{n_{\theta}}$ is a vector of coefficients.

Instrumental variable (IV) method

$$\widehat{\boldsymbol{\theta}} = \operatorname{sol}\left\{\frac{1}{N}\sum_{k=1}^{N} \boldsymbol{Z}(k)(\mathbf{y}(k) - \boldsymbol{\Phi}^{T}(k)\boldsymbol{\theta}) = 0\right\}$$

- The IV method is a common way of dealing with measurement uncertainty.
- $sol{f(x) = 0}$ is the solution to f(x) = 0.
- Z(k) is called the *instrument matrix and* should be correlated with the system state but uncorrelated with the system disturbances.
- The method coincides with LS if $Z(k) = \Phi(k)$.

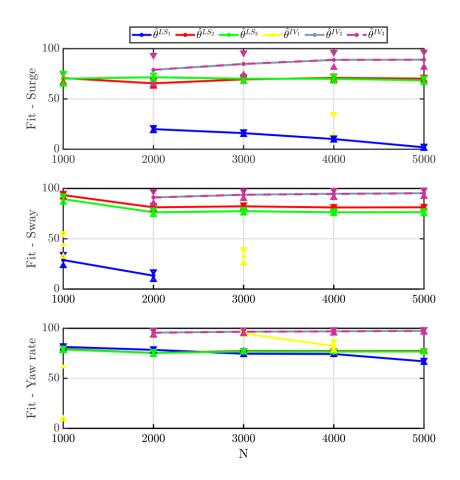
Dealing with disturbances

- **Scenario 1**: $E\{v(k)\} = 0$.
 - Interpretation: Only bursty wind gusts (or currents).
 - Solution: Excitation offset and zero-mean instruments.
- Scenario 2: $E\{v(k)\} = \overline{v}$ and |v(k)| < |x(k)| for k = 1, ..., N.
 - Interpretation: Wind (or current) moves *slower* than the ship and has an unknown first-order moment.
 - Solution: Excitation offset, zero-mean instruments and extended predictor with orientation-dependent regressors.

 $\hat{\boldsymbol{y}}(k|\boldsymbol{\theta},\boldsymbol{\rho}) = (y(k)|y(k)|, \dots, u(k), \varphi_1(\boldsymbol{Y}_{\boldsymbol{R}}(k)), \varphi_2(\boldsymbol{Y}_{\boldsymbol{R}}(k)), \dots)(\theta_1, \dots, \theta_n, \rho_1, \rho_2, \dots)^T$

- Scenario 3: $E\{v(k)\} = \overline{v}$ and $|v(k)| \leq |x(k)|$ for k = 1, ..., N.
 - Interpretation: Wind (or current) occasionally moves *faster* than the ship and has an unknown first-order moment.
 - Solution: Excitation offset, zero-mean instruments and auxiliary disturbance measurement: $y_{aux}(k) = \mathbf{R}(k)\mathbf{v}(k) + \mathbf{e}_{aux}(k)$.

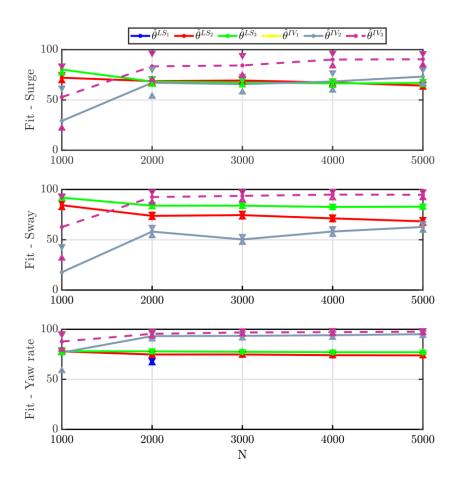
Results I/II (simulated data)



Setup I/II: Low wind speed Low current speed

Estimator	ψ -dep. reg.	Wind meas.
$\hat{\theta}_N^{LS_1}$	-	-
$\hat{\theta}_N^{LS_2}$	\checkmark	-
$\hat{ heta}_N^{LS_3}$	\checkmark	\checkmark
$\hat{ heta}_N^{IV_1}$		-
$\hat{ heta}_N^{IV_2}$	\checkmark	-
$\hat{ heta}_N^{IV_3}$	\checkmark	\checkmark

Results II/II (simulated data)



Setup II/II: <u>High</u> wind speed <u>Low</u> current speed

Estimator	ψ -dep. reg.	Wind meas.
$\hat{\theta}_N^{LS_1}$	2=	-
$\hat{\theta}_N^{LS_2}$	\checkmark	
$\hat{ heta}_N^{LS_3}$	\checkmark	\checkmark
$\hat{ heta}_N^{IV_1}$.=	-
$\hat{\theta}_N^{IV_2}$	\checkmark	-
$\hat{ heta}_N^{IV_3}$	\checkmark	\checkmark

Informative mix of sub-experiments

Goal: Find u(k) that maximizes the determinant of

$$\boldsymbol{G}(N) \triangleq \frac{1}{2} \frac{d^2}{d\theta^2} V_N^{IV}(\theta) = \left[\frac{1}{N} \sum_{k=1}^N \boldsymbol{\Phi}(k) \boldsymbol{Z}^T(k)\right] \left[\frac{1}{N} \sum_{k=1}^N \boldsymbol{\Phi}(k) \boldsymbol{Z}^T(k)\right]^T$$

Solution in steps:

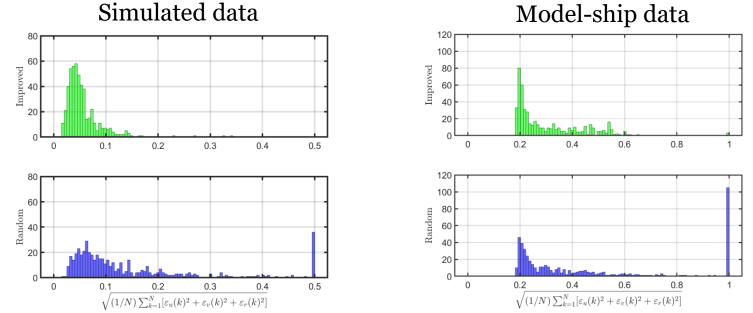
- 1. Choose candidate signals $u_1(k), \ldots, u_Q(k)$ (standard maneuvers).
- 2. Estimate $\overline{\Gamma}_1, ..., \overline{\Gamma}_Q$ (information matrices) based on simulation experiments with a nominal model or based on initial experiments with the real platform.
- 3. Assume that $u_1(k), \ldots, u_0(k)$ are to be applied in sequence and solve

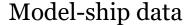
$$(N_1^*, \dots, N_Q^*) = \underset{\substack{N_1, \dots, N_Q \\ N_1, \dots, N_Q}}{\operatorname{argmax}} \log |\det(\mathbf{T})|$$

s.t. $\mathbf{T} = N_1 \overline{\Gamma}_1 + \dots + N_Q \overline{\Gamma}_Q$
 $N_1 + \dots + N_Q = N$
 $N_q \ge 0, \qquad q = 1, \dots, Q$

Results

- 11 different candidate input signals, $u_1(k), \ldots, u_{11}(k)$. ٠
- Data collected from 55 sub-experiments (5 of each type). ٠
- Improved design: Pick 6 sub-experiments that work well together. ٠
- Random design: Pick 6 sub-experiments at random. ٠
- Evaluation by comparing simulation accuracy of resulting models. ٠

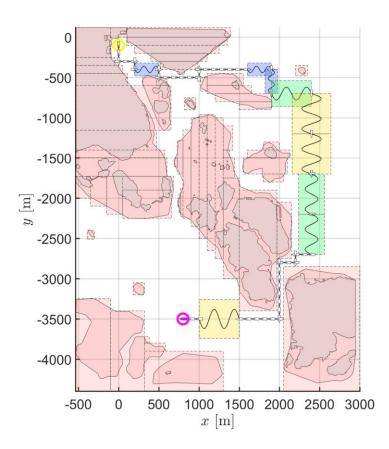




Obtaining an experiment trajectory

$$\begin{array}{l} \underset{\{m_k\}_{k=0}^{M-1},M}{\text{minimize}} & \sum_{k=0}^{M-1} J(m_k) \\ \text{s.t.} & \mathbf{x}_0 = \mathbf{x}_s, \ \mathbf{x}_M = \mathbf{x}_f, \\ & \mathbf{x}_{k+1} = f(\mathbf{x}_k, m_k), \\ & m_k^p \in \left\{ \underbrace{m^1, \cdots, m^Q}_{\text{informative}}, \underbrace{m^{Q+1}, \cdots, m^{Q+B}}_{\text{basic}} \right\} \\ & c(m_k, \mathbf{x}_k) \in \mathcal{X}_{\text{free}}. \end{array}$$

- The signals, $u_1(k), ..., u_Q(k)$, are used to form motion primitives.
- The ratios found in the previous step are respected by augmenting the state vector with motion-primitive counters.



Conclusions

Main Results

- A framework for obtaining <u>consistent estimators</u> for the parameters of <u>second-order modulus</u> <u>models</u> that are robust to data having been collected in the presence of
 - Measurement uncertainty.
 - Environmental disturbances.
- A method for <u>improved experiment design</u> for ships that gives <u>informative data</u> as well as a <u>spatially feasible</u> trajectory.

Acknowledgments

- ABB for collaboration
- LINK-SIC for funding

Thank you!

