Time- and energy-optimal control of cranes subject to geometric constraints

Filipe Barbosa and Johan Löfberg

Summary	

- **Objective:** Trade-off time and energy when loading a container ship.
- **Challenge:** Avoid collision with container stacks.
 - **Trick:** Variable change in an optimal control problem and standard epigraph formulations.
- **Conclusion:** Energy consumption can be reduced with minor increase in the loading time.

Preliminaries

The nonlinear state-space representation in the original form is

$$\dot{x}(t) = f(t, x(t), u(t)).$$

Taking regeneration into account, the energy consumed is

Problem reformulation

1. To deal with a non-smooth integrand in the cost function:

subject to $z(t) \ge$ $z(t) \ge \gamma P(t)$

with z(t) as an upper bound in an epigraph formulation.

2. Time discretization would lead to

$$0 \le y_p(t^k) \le h - s(x_p(t^k))$$

So, use spatial derivatives deal to with the collision avoidance

$$\dot{x}_1 = \frac{dx_1}{dt} = x_2 \implies \frac{dt}{dx_1} =$$

and the collision avoidance becomes

 $0 \le y_p(x_p^k) \le h - s(x_p^k).$

The optimization problem

minimize $J = \Psi(E, t_f)$ subject to $x_2 \dot{x}(x_p) = f(x_p, x(x_p), u(x_p))$ $0 \le y_p(x_p) \le h - s(x_p) \leftarrow \text{container constraints}$ $z_t(t) \ge P_t(x_p)$ $z_t(t) \ge \gamma_t P_t(x_p)$ $z_h(t) \ge P_h(x_p)$ $z_h(t) \ge \gamma_h P_h(x_p)$ other constraints

$$(t)dt$$

 $P(t)$

 $J_{r_1} = \frac{1}{x_2}, \ \frac{dx_2}{dx_1} = \dots$

Simulation example

The time and energy trade-off is made through $0 \le \alpha \le 1$.

$\bigcirc \alpha$	_	0.50
$\bigcirc \alpha$	=	0.99
$\bigcirc \alpha$	=	0.01