Decentralized Target Tracking Under Partially Known Covariances and Communication Constraints Robin Forsling [robin.forsling@liu.se]

Background

The task is to estimate a *target* state x^0 by utilizing multiple *decentralized agents*, where each agent has *sensor* and *communication* capabilities. By fusion of multiple local estimates improved track estimates are obtained.

MODEL The *i*th local estimate of $x^0 \in \mathbb{R}^n$ is given by

 $y_i = H_i x^0 + v_i, \qquad \qquad R_i = \operatorname{cov}(v_i),$

where $H_i \in \mathbb{R}^{n_i \times n}$, v_i is noise, $y_i \in \mathbb{R}^{n_i}$ is the local state estimate and R_i is its covariance. The cross-covariance of y_i and y_j is $R_{ij} = \operatorname{cov}(v_i, v_j)$. For N = 3 estimates, let $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$, $H = \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$, $R = \begin{bmatrix} R_1 & R_{12} & R_{13} \\ R_{21} & R_2 & R_{23} \\ R_{31} & R_{32} & R_3 \end{bmatrix}$, and similarly for arbitrary N. Hence $y = Hx^0 + v$.

Two Subproblems

Conservative Linear Unbiased Estimation

Conservative estimation methods are important when *R* is only partially known. A typical scenario where this occurs is decentralized estimation where the cross-covariances R_{ij} , $i \neq j$ are often unknown. If *R* is only partially known we say that $R \in \mathcal{A}$, where \mathcal{A} is a set of admissible covariance matrices.

PROBLEM STATEMENT

Given y and \mathcal{A} , compute an estimate \hat{x} of x^0 with covariance P, where P is as small as possible but not smaller than the true covariance of \hat{x} .

- Since we only know $R \in \mathcal{A}$, it is impossible to compute the true covariance of \hat{x} .
- It is assumed $\mathcal{A} \subset \mathbb{S}^m_{++}$ where \mathbb{S}^m_{++} is the set of all $m \times m$ symmetric positive definite matrices.

In decentralized target tracking **cross-covariances are often unknown** and the **communication link is limited**. These issues must be handled without *underestimating the uncertainty* and without *degrading the performance* too much. We consider the following **two subproblems**: • **Conservative estimation under partially known covariances**

• Optimal fusion of dimension-reduced estimates

Fusion of Dimension-Reduced Estimates

One way of handling communication constraints is by *reducing the dimensionality* of communicated estimates. This can be done e.g., by transmitting $(\Psi y_2, \Psi R_2 \Psi^T)$ instead of (y_2, R_2) , where $\Psi \in \mathbb{R}^{m \times n}$ is a wide matrix:

An estimator (\hat{x}, P) is a *conservative linear unbiased estimator* (CLUE) if it has the following **properties**:

An **optimal CLUE** is defined as follows:

BEST CLUE

Let *J* be a loss function. An estimator reporting $\hat{x}^* = K^* y$ and P^* is called a *best CLUE* if (K^*, P^*) is the solution to

 $\begin{array}{l} \underset{K,P}{\text{minimize }} J(P) \\ \text{subject to } KH = I \\ P \geq KRK^{\mathsf{T}}, \forall R \in \mathcal{A}. \end{array}$

Using *robust optimization* (RO) the CLUE problem can be solved. As an example, consider fusion of (y_i, R_i) , where i = 1, 2, 3 and $H = \begin{bmatrix} I & I & I \end{bmatrix}^T$. The RO method is compared with *covariance intersection* (CI):

Performance depends on the choice of Ψ .

PROBLEM STATEMENT

Let (\hat{x}, P) be the result of fusing (y_1, R_1) and $(\Psi y_2, \Psi R_2 \Psi^T)$. Then the optimal Ψ , denoted by Ψ^* , is given by

 $\underset{\Psi}{\text{minimize tr}}(P).$

(1)

Since *P* depends on the particular fusion method and availability of R_{12} , so does the optimal Ψ . Assume $H_1 = H_2 = I$ and that R_{12} is available.

SOLUTION

Let $Q = (R_1 - R_{12})^T (R_1 - R_{12})$ and $S = R_1 + R_2 - R_{12} - R_{12}^T$. The solution to the problem in (1) is given by $\Psi^* = [x_n \dots x_{n-m+1}]^T$, where x_i is a generalized eigenvector associated with $\lambda_i(Q, S)$ and $\lambda_1 \leq \dots \leq \lambda_n$.

As an example, assume n = 2 and $R_{12} = 0$:

 $--- R_1$

 R_2

 $\longrightarrow x_{\max}$

 $\cdots \rightarrow x_{\min}$

P^{CI} is the covariance of the CI method
P^{RO} is the covariance of the RO approach
P^l is a theoretical lower bound

for a certain R the covariance of the optimal linear estimate is $(H^{T}R^{-1}H)^{-1}$

LINKÖPING UNIVERSITY Division of Automatic Control