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Aim of todays lecture

Introduce the general idea of identifying geometric spaces with the
corresponding (commutative) function algebras.

Give an idea of what noncommutative geometry is about.

Recall how geometrical objects may be though of in an algebraic way.

Generalization of geometric concepts to noncommutative algebras.

General idea

To study a geometric space through the algebra of functions from the
space to a field K. That is, study functions instead of points.
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Why non-commutative geometry?

Quantum gravity.

Just as algebraic geometry can be seen as a way to study
commutative rings, non-commutative geometry can be used to study
non-commutative rings.

There are spaces (e.g. the space of leaves of a foliation) which have
no interesting measurable (real-valued) functions. However, they
exhibit interesting operator-valued functions.

Deep relation to operator algebras.

Index theory / K-theory. The generalizations of the Atiyah-Singer
index theorem leads in a very natural way to non-commutative
geometry.
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Quantum gravity and non-commutative geometry

Why is non-commutative geometry important for physics, in particular
quantum gravity?

Most physicists believe that non-commutative geometry is necessary (in
some form) to reconcile the two most outstanding physical theories of the
20th century: quantum mechanics and general relativity.

At very small distances (10−35m, the Planck length) our “normal”
concepts of length and geometry break down as measurements are no
longer possible. To measure distances one needs a photon with a
wave-length which is shorter than the distance one wants to measure. To
measure something at the Planck length, the energy of the photon would
be high enough to create a black hole, thus making all measurements even
theoretically impossible.

Hence, if one wants to understand a deeply geometric physical theory –
General relativity – one has to make sense of geometry in noncommutative
algebras.
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General ideas / Rules of the game

1 Study the algebra of functions on a geometric space and try to
express geometric quantities in algebraic terms.

2 Investigate to what extent these concepts make sense in an arbitrary
commutative algebra.

3 Can the above concepts be implemented in a non-commutative
algebra?

4 Study non-commutative algebras which allow for the implementation
of geometric concepts.
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The (commutative) algebra of functions

Let K be a field (R or C). The set of K-valued functions on a space X is
a ring:

(f+g)(x)=f(x)+g(x)

(fg)(x)=f(x)g(x)

Unit: constant function f(x)=1

Zero: constant function f(x)=0

Moreover, it is a vector space over K, i.e a K-algebra.
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Points as a dual objects

Given an algebra of functions A, one may consider a point x to be a linear
functional x : A → K:

x(f ) = f (x).

Furthermore, in the commutative case, the point is considered to be an
algebra homomorphism, e.g.

x(f · g) = x(f )x(g) = f (x)g(x).

Hence, there is a duality between functions and points (which is, of course,
at the heart of algebraic geometry). However, we shall mainly not be
interested in recovering the points from the algebra, but rather to forget
about the points all together.
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Example – The sphere

For instance, instead of directly considering the sphere,

{(x , y , z) ∈ R3 : x2 + y2 + z2 − 1 = 0},

one studies the ring of polynomial functions from the sphere to R

R[x , y , z ]/(x2 + y2 + z2 − 1)

where (x2 + y2 + z2 − 1) denotes the ideal generated by the element
x2 + y2 + z2 − 1. That is, the polynomial x2 + y2 + z2 − 1 is identified
with 0.
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One can study the function algebra in many different settings:

Polynomial functions → Algebraic Geometry,

Continuous functions on a topological space,

Smooth functions on a differentiable manifold,

. . .

In each case, one tries to formulate geometric properties in terms of
algebraic properties of the function algebra, such that one can do
geometry in a purely algebraic way.

Once this is done, one often tries to abstract the algebra from the
underlying space. That is, one tries to find a class of algebras for which
the geometric concepts make sense.

Let us make one of the dualities above more precise.

Joakim Arnlind Algebraic aspects of Riemannian geometry 2023-01-26 9 / 30



∗-algebras
Much of noncommutative geometry is done in the context of ∗-algebras,
which are associative algebras together with an involution, playing the role
of a complex conjugation.

Definition

A ∗-algebra (A, ∗) is an associative algebra (over C) such that ∗ : A → A
satisfies

(a∗)∗ = a

(a+ b)∗ = a∗ + b∗

(ab)∗ = b∗a∗

(λa)∗ = λ̄a∗

for a, b ∈ A and λ ∈ C.

For instance, matrix algebras over C together with hermitian conjugate.

Joakim Arnlind Algebraic aspects of Riemannian geometry 2023-01-26 10 / 30



C ∗-algebras

The “analytic” version of ∗-algebras are C ∗-algebras which are closely
related to operator algebras.

Definition

A Banach algebra (A, ||·||) is an associative algebra (over C) which is also
a Banach space, such that ||ab|| ≤ ||a|| ||b|| for all a, b ∈ A.

Definition

A C ∗-algebra (A, ||·|| , ∗) is a Banach algebra (A, ||·||) and a ∗-algebra
(A, ∗) such that ||x∗x || = ||x || ||x∗|| (C ∗-condition).

Continuous C-valued functions on a top. space, vanishing at infinity.

Bounded operators on a Hilbert space.
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The (commutative) Gelfand-Naimark theorem

The algebra of continuous C-valued functions that vanish at infinity on a
(loc. compact, Hausdorff) topological space is a commutative C ∗-algebra.

A commutative C ∗-algebra A gives rise to a topological space X (A) by
considering the space of ∗-homomorphism from the algebra to C.

Theorem (Gelfand-Naimark)

A ≃ C0

(
X (A)

)
The theorem shows that there is a categorical equivalence between the
category of (locally compact) topological spaces and the category of
commutative C ∗-algebras.

One can also show that the topological space is compact if and only if the
corresponding C ∗-algebra is unital.
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Noncommutative topology

Hence, the study of topological spaces is the same thing as the study of
commutative C ∗-algebras.

It seems quite natural to think about noncommutative C ∗-algebras as
“noncommutative topology”.

Of course, this is just a way of thinking and nothing prevents us from
studying general associative algebras by geometric means.
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Building up a dictionary

Now, how to we translate geometric concepts to a (noncommutative)
algebraic setting?

We have already seen that

Algebra of functions ↔ Associative algebra over C
Compact space ↔ Unital algebra

Let us now take a look at how one can introduce other geometric notions
in an algebraic language.
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Vector bundles

A vector bundle is a smooth assignment of a vector space to each
point of a manifold M.

It can be as simple as the Cartesian product M × Rn (trivial bundle),
but there are non-trivial vector bundles.

An example of a vector bundle is the tangent bundle of a manifold,
which assigns the vector space of tangent vectors to each point.

For instance, the tangent bundle of the sphere is not a trivial bundle,
but the tangent bundle of a torus is a trivial bundle.
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Sections of vector bundles

Given a vector bundle E , a smooth choice of a vector for each point is
called a section of the vector bundle.

Given two vector fields X ,Y : M → E one can add them, and
multiply by functions

(X + Y )(p) = X (p) + Y (p)

(fX )(p) = f (p)X (p)

for f ∈ C∞(M) and p ∈ M.

That is, the space of sections of a vector bundle is a module over the
algebra of functions C∞(M).
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Vector bundles and projective modules

Because of the following theorem by Serre and Swan (here in the form of
Swan) one has a good algebraic notion of a vector bundle.

Theorem (R. G. Swan)

Let X be a compact Hausdorff space, and let C (X ) be the ring of
continuous functions from X to R. A C (X )-module P is isomorphic to a
module of sections of a vector bundle if and only if it is a finitely
generated projective module.

Hence, one simply defines a vector bundle over an arbitrary
(noncommutative) algebra A as a finitely generated projective A-module.

Vector bundle ↔ Finitely generated projective module
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Vector fields
A section of the tangent bundle is called a vector field. It is an assignment
of a tangent vector to each point of the manifold.

In local coordinates, a vector field can be written as

X = X i ∂

∂x i

and act as a derivative

X (f ) = X i ∂f

∂x i

for f ∈ C∞(M). Let us denote the space of vector fields by X (M).
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Vector fields and derivations

So, a vector field is a derivation of the algebra C∞(M). Recall that a
derivation ∂ of a K-algebra A is a K-linear map ∂ : A → A such that

∂(ab) = a(∂b) + (∂a)b.

In fact, one can show that the set of derivations of C∞(M) is in one to
one correspondence with the set of vector fields.

Vector fields ↔ Derivations

Note that for a commutative algebra, the set of derivations is a module
over the algebra. This is not true for a noncommutative algebra. However,
the set of derivations is still a module over the center of the algebra.

(Computation on the board.)

Thus, if one is looking for a module to serve as vector fields in a
noncommutative setting, the set of derivations is not suitable.
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Differential forms

Differential forms are dual objects to vector fields.

At each point a differential n-form ω ∈ Ωn(M) is a multi linear
alternating map of n tangent vectors to a number.

Globally, a differential n-form is a multi linear alternating map

ω : X (M)× · · · × X (M) → C∞(M)

The set of n-forms Ωn(M) is a module over C∞(M).

(ω + η)(X1, . . . ,Xn) = ω(X1, . . . ,Xn) + η(X1, . . . ,Xn)

(f ω)(X1, . . . ,Xn) = f
(
ω(X1, . . . ,Xn)

)
A n-form ω and a m-form η can be multiplied to give a (m + n)-form
ω ∧ η.

The exterior derivative d : Ωn(M) → Ωn+1(M). In particular,
df ∈ Ω1(M) for f ∈ C∞(M).
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Differential graded algebra

The direct sum of differential forms of all degrees

Ω(M) =
⊕
k≥0

Ωk(M)

(recall that Ωk(M) = 0 for k > dim(M)) is a differential N-graded algebra,
graded by the degree of the form, with Ω0(M) = C∞(M).

For ω ∈ Ωn and η ∈ Ωm(M):

ω ∧ η ∈ Ωn+m(M)

dω ∈ Ωn+1(M)

d(ω ∧ η) = (dω) ∧ η + (−1)nω ∧ (dη)

Note: In a differential graded algebra there is in general no relation like
ω ∧ η = (−1)mnη ∧ ω. If this is the case, the algebra is called graded
commutative.
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Differential calculus

Thus, if one wants data corresponding to a differentiable manifold
one should, apart from choosing an algebra A, provide some kind of
“differentiable structure”.

In the spirit of Alain Connes (Fields medallist and the “father” of
noncommutative geometry) one chooses a representation of the
algebra on a Hilbert space together with a “Dirac operator” acting on
the space. (This also gives metric information.)

Another way of doing this is to choose a differential graded algebra Ω
such that Ω0 = A.

Yet another way is to choose a distinguished set of derivations on the
algebra, defining the calculus.

In noncommutative geometry, we have to live with the fact that there
are many possible choices of differential calculus over an algebra.
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Derivation based differential calculus

In this approach (pioneered by Michel Dubois-Violette), one starts by
choosing an algebra A together with a Lie algebra g ⊆ Der(A).

Is g = Der(A) a canonical choice? Not always, a noncommutative
algebra has plenty of inner derivations ∂(a) = [a,D] for some D ∈ A.

For several reasons, one is usually more interested in outer derivations.

Now, let us start with the pair (A, g) and build a differential graded
algebra.

The algebra A correspond to the “functions” and the Lie algebra g
correspond to the “vector fields”. The differential graded algebra will
correspond to the “differential forms”.
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Thus, given g ⊆ Der(A), one defines Ω̄k
g to be the set of Z (A)-multilinear

alternating maps (Z (A) =center of A)

ω : g× · · · × g︸ ︷︷ ︸
k

→ A,

and one gives Ω̄k
g the structure of a A-bimodule by setting

(aω)(∂1, . . . , ∂k) = aω(∂1, . . . , ∂k)

(ωa)(∂1, . . . , ∂k) = ω(∂1, . . . , ∂k)a

for a ∈ A, ω ∈ Ω̄k
g and ∂1, . . . , ∂k ∈ g.

Furthermore, for ω ∈ Ω̄k
g and τ ∈ Ω̄l

g one defines ωτ ∈ Ω̄k+l
g as

(ωτ)(∂1, . . . , ∂k+l)

=
1

k!l!

∑
σ∈Sk+l

sgn(σ)ω(∂σ(1), . . . , ∂σ(k))τ(∂σ(k+1), . . . , ∂σ(k+l)),

where SN denotes the symmetric group on N letters.
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For a ∈ A one defines d0 : A = Ω̄0
g → Ω̄1

g as

(d0a)(∂) = ∂a

and for ω ∈ Ω̄k
g (for k ≥ 1) one defines dk : Ω̄k

g → Ω̄k+1
g by

dkω(∂0, . . . , ∂k) =
k∑

i=0

(−1)i∂i
(
ω(∂0, . . . , ∂̂i , . . . , ∂k)

)
+

∑
0≤i<j≤k

(−1)i+jω
(
[∂i , ∂j ], ∂0, . . . , ∂̂i , . . . , ∂̂j , . . . , ∂k

)
,

satisfying dk+1dk = 0, where ∂̂i denotes the omission of ∂i in the
argument. When there is no risk for confusion, we shall omit the index k
and simply write d : Ω̄k

g → Ω̄k+1
g .

Since d2 = 0 there is a natural cohomology theory

Hk(Ωg) = ker(dk)/ im(dk−1)
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Differential calculus over A
Finally, we set

Ω̄g =
⊕
k≥0

Ω̄k
g

and note that (Ω̄g, d) is a differential graded algebra. In this way, we have
constructed a differential calculus over an algebra A from a choice of
derivations.

Ω̄1
g is an A-bimodule, which we think of as (sections of) the cotangent

bundle – differential 1-forms.

In many cases, one is interested in the differential graded subalgebra
Ωg ⊆ Ω̄g generated by the algebra A. That is, ω ∈ Ωk

g can be written as

ω = a0da1da2 · · · dak

for a0, . . . , ak ∈ A.
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A few examples of computations on the board.
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The noncommutative torus

Let T 2
θ be the unital associative ∗-algebra generated by U,V such that

VU = e i2πθUV

UU∗ = U∗U = 1 = VV ∗ = V ∗V

One should think of U ∼ e iφ1 and V ∼ e iφ2 when relating to the torus.
There are two “natural” outer derivations corresponding to ∂

∂φ1
, ∂
∂φ2

∂1U = iU ∂1V = 0

∂2U = 0 ∂2V = iV

satisfying [∂1, ∂2] = 0. Let g denote the Lie algebra generated by ∂1, ∂2.

(Differential graded algebra of T 2
θ on the board.)
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Connections and curvature

Let g be a Lie subalgebra of Der(A).

Definition

Let M be a left A-module. A left connection on M is a map
∇ : g×M → M such that

∇∂

(
m +m′) = ∇∂m +∇∂m

′

∇∂+∂′m = ∇∂m +∇∂′m

∇z·∂m = z∇∂m

∇∂(am) = a∇∂m + (∂a)m

for m,m′ ∈ M, ∂, ∂′ ∈ g, a ∈ A and z ∈ Z (A).

The curvature of ∇ is the map R : g× g×M → M defined as

R(∂, ∂′)m = ∇∂∇∂′m −∇∂′∇∂m −∇[∂,∂′]m.

Joakim Arnlind Algebraic aspects of Riemannian geometry 2023-01-26 29 / 30



Connections on projective modules

Let An be a free (left) module and let p ∈ EndA(An) be a projection; i.e.
p2 = p, and let P = p(An) be the corresponding projective module.

Proposition

If ∇̃ is a connection on An then ∇ = p ◦ ∇̃ is a connection on P = p(An).

Thus, connections always exist on projective modules; e.g. let {ei}ni=1 be a
basis of An and set (summation convention: sum i from 1 to n)

∇̃∂(m
iei ) = (∂mi )ei .

Then ∇̃ is a connection on An, and p ◦ ∇̃ is a connection on p(An). Since
every finitely generated projective module can be realized in this way, this
shows that there exist connections on finitely generated projective modules.
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