Algebraic aspects of Riemannian geometry

Joakim Arnlind

Linköping Algebra Seminar (part 2) 2023-02-16

Connections and curvature

Let \mathfrak{g} be a Lie subalgebra of $Der(\mathcal{A})$.

Definition

Let M be a left A-module. A *left connection on* M is a map $\nabla : \mathfrak{g} \times M \to M$ such that

$$abla_{\partial} ig(m + m' ig) =
abla_{\partial} m +
abla_{\partial} m'$$
 $abla_{\partial+\partial'} m =
abla_{\partial} m +
abla_{\partial'} m$
 $abla_{z \cdot \partial} m = z
abla_{\partial} m + (\partial a) m$
 $abla_{\partial} (am) = a
abla_{\partial} m + (\partial a) m$

for $m, m' \in M$, $\partial, \partial' \in \mathfrak{g}$, $a \in \mathcal{A}$ and $z \in Z(\mathcal{A})$.

The curvature of ∇ is the map $R : \mathfrak{g} \times \mathfrak{g} \times M \to M$ defined as

$$R(\partial, \partial')m = \nabla_{\partial}\nabla_{\partial'}m - \nabla_{\partial'}\nabla_{\partial}m - \nabla_{[\partial, \partial']}m.$$

Connections on projective modules

Let \mathcal{A}^n be a free (left) module and let $p \in \operatorname{End}_{\mathcal{A}}(\mathcal{A}^n)$ be a projection; i.e. $p^2 = p$, and let $P = p(\mathcal{A}^n)$ be the corresponding projective module.

Proposition

If $\widetilde{\nabla}$ is a connection on \mathcal{A}^n then $\nabla = p \circ \widetilde{\nabla}$ is a connection on $P = p(\mathcal{A}^n)$.

Thus, connections always exist on projective modules; e.g. let $\{e_i\}_{i=1}^n$ be a basis of \mathcal{A}^n and set (summation convention: sum *i* from 1 to *n*)

$$\widetilde{\nabla}_{\partial}(m^i e_i) = (\partial m^i) e_i.$$

Then $\widetilde{\nabla}$ is a connection on \mathcal{A}^n , and $p \circ \widetilde{\nabla}$ is a connection on $p(\mathcal{A}^n)$. Since every finitely generated projective module can be realized in this way, this shows that there exist connections on finitely generated projective modules.

Metrics on vector bundles

Let \mathcal{A} be the algebra of smooth functions on a differentiable manifold, let E be a vector bundle and let M denote the \mathcal{A} -module of smooth sections of E. A metric on the vector bundle E is a nondegenerate symmetric \mathcal{A} -bilinear map $g: M \times M \to \mathcal{A}$; i.e.

$$g(m_1, m_2) = g(m_2, m_1)$$
 $g(fm_1, m_2) = fg(m_1, m_2)$
 $g(m_1 + m_2, m_3) = g(m_1, m_3) + g(m_2, m_3)$
 $g(m_1, \cdot) : M \to M^*$ is bijective (for $m_1 \neq 0$)

for $m_1, m_2, m_3 \in M$ and $f \in A$. Note: I haven't imposed "positive definite". This is a pseudo-Riemannian metric.

Hermitian forms on modules

Generalizing metrics to noncommutative algebras, one has to replace the symmetry condition $g(m_1, m_2) = g(m_2, m_1)$, which is far too restrictive for a noncommutative algebra.

Definition

Let M be a left \mathcal{A} -module. A map $h: M \times M \to \mathcal{A}$ is called a hermitian form on M if

$$h(m_1 + m_2, m_3) = h(m_1, m_3) + h(m_2, m_3)$$

 $h(am_1, m_2) = ah(m_1, m_2)$
 $h(m_1, m_2)^* = h(m_2, m_1).$

Moreover, we say that a hermitian form h is invertible if $h(m, \cdot) : M \to M^*$ is bijective for all $m \in M$ $(m \neq 0)$.

Thus, the (pseudo-)Riemannian metric is replaced by a (invertible) hermitian form in noncommutative geometry.

Hermitian forms on free and projective modules

Let \mathcal{A}^n be a free (left) \mathcal{A} -module with basis $\{e_i\}_{i=1}^n$. A hermitian form h is defined as

$$h(m,n) = h(m^i e_i, n^j e_j) = m^i h_{ij}(n^j)^*$$

(summation from 1 to n implied) arbitrary $h_{ij} \in \mathcal{A}$ such that $h^*_{ij} = h_{ji}$.

For a free module, invertibility is equivalent to the existence of $h^{ij} \in \mathcal{A}$ s. t.

$$h^{ij}h_{jk}=\delta^i_k\mathbb{1}.$$

Thus, it is easy to construct hermitian forms on free modules. By restricting to the image of a projector $p : \mathcal{A}^n \to \mathcal{A}^n$ ($p^2 = p$), one can construct hermitian forms on projective modules.

Proposition (A. 2021)

Let h be a hermitian form on a finitely generated (left) projective \mathcal{A} -module M with generators $\{e_i\}_{i=1}^n$ and set $h_{ij} = h(e_i, e_j)$. Then h is invertible if and only if there exists $h^{ij} \in \mathcal{A}$ such that $h_{ij}h^{jk}e_k = e_i$ for i = 1, ..., n.

Metric connections

In Riemannian geometry, a connection is compatible with the metric if

$$X(g(m_1,m_2)) = g(\nabla_X m_1,m_2) + g(m_1,\nabla_X m_2)$$

for $m_1, m_2 \in M$ and X a vector field. Similarly, one defines a connection on a left A-module to be compatible with a hermitian form h if

$$\partial h(m_1, m_2) = h(\nabla_{\partial} m_1, m_2) + h(m_1, \nabla_{\partial^*} m_2)$$

where $\partial^*(a) = (\partial(a^*))^*$.

Theorem (A. 2021)

Let M be a finitely generated projective A-module and let h be an invertible hermitian form on M. Then there exists a connection on M compatible with h.

Torsion of a connection

For a connection on the tangent bundle of a manifold, the torsion is defined as

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

for $X, Y \in \mathcal{X}$ (vector fields). On a vector bundle there is no canonical way of defining torsion, but one can do it relative to an anchor map $\varphi : \mathcal{X} \to M$

$$T_{\varphi}(X,Y) = \nabla_X \varphi(Y) - \nabla_Y \varphi(X) - \varphi([X,Y]).$$

In noncommutative geometry, one can introduce

$$\mathcal{T}_{arphi}(\partial_1,\partial_2) =
abla_{\partial_1}arphi(\partial_2) -
abla_{\partial_2}arphi(\partial_1) - arphi([\partial_1,\partial_2])$$

for $\partial_1, \partial_2 \in \mathsf{Der}(\mathcal{A})$ and $\varphi : \mathsf{Der}(\mathcal{A}) \to M$.

8/10

Noncommutative Levi-Civita connections

Given

- *-algebra ${\mathcal A}$
- Lie algebra of derivations $\mathfrak{g} \subseteq \mathsf{Der}(\mathcal{A})$
- *A*-module *M*
- invertible hermitian form h on M
- anchor map $\varphi : \mathfrak{g} \to M$

one can ask if there exists a torsion free connection on M compatible with h; i.e. a connection ∇ om M such that

$$\begin{aligned} \partial h(m_1, m_2) &= h \big(\nabla_{\partial} m_1, m_2 \big) + h \big(m_1, \nabla_{\partial^*} m_2 \big) \\ T_{\varphi}(\partial_1, \partial_2) &= \nabla_{\partial_1} \varphi(\partial_2) - \nabla_{\partial_2} \varphi(\partial_1) - \varphi([\partial_1, \partial_2]) = 0 \end{aligned}$$

for $\partial, \partial_1, \partial_2 \in \mathfrak{g}$ and $m_1, m_2 \in M$? Furthermore, if such a "Levi-Civita connection" exists, is it unique?

Pseudo-Riemannian calculi

Without further assumptions, neither existence nor uniqueness of a Levi-Civita connection is guaranteed. Over the last 10 years I've been interested in understanding under what assumptions such connections exist, and when they are unique.

Let $M_{\varphi} \subseteq M$ denote the image of φ in M. Assume that

• M_{arphi} generates M as an \mathcal{A} -module,

•
$$h(E,E')=h(E,E')^*$$
 for $E,E'\in M_arphi$

• $h(E, \nabla_{\partial} E')^* = h(E, \nabla_{\partial} E')$ for $E, E' \in M_{\varphi}$ and $\partial \in \mathfrak{g}$.

Theorem (A., Wilson 2017)

Under the above assumptions, there exist at most one Levi-Civita connection on M.

It is easy to show that Levi-Civita connection exist on free modules. However, what about projective? Not so clear for the moment.