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Connections and curvature

Let g be a Lie subalgebra of Der(A).

Definition

Let M be a left A-module. A left connection on M is a map
∇ : g×M → M such that

∇∂

(
m +m′) = ∇∂m +∇∂m

′

∇∂+∂′m = ∇∂m +∇∂′m

∇z·∂m = z∇∂m

∇∂(am) = a∇∂m + (∂a)m

for m,m′ ∈ M, ∂, ∂′ ∈ g, a ∈ A and z ∈ Z (A).

The curvature of ∇ is the map R : g× g×M → M defined as

R(∂, ∂′)m = ∇∂∇∂′m −∇∂′∇∂m −∇[∂,∂′]m.
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Connections on projective modules

Let An be a free (left) module and let p ∈ EndA(An) be a projection; i.e.
p2 = p, and let P = p(An) be the corresponding projective module.

Proposition

If ∇̃ is a connection on An then ∇ = p ◦ ∇̃ is a connection on P = p(An).

Thus, connections always exist on projective modules; e.g. let {ei}ni=1 be a
basis of An and set (summation convention: sum i from 1 to n)

∇̃∂(m
iei ) = (∂mi )ei .

Then ∇̃ is a connection on An, and p ◦ ∇̃ is a connection on p(An). Since
every finitely generated projective module can be realized in this way, this
shows that there exist connections on finitely generated projective modules.
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Metrics on vector bundles

Let A be the algebra of smooth functions on a differentiable manifold, let
E be a vector bundle and let M denote the A-module of smooth sections
of E . A metric on the vector bundle E is a nondegenerate symmetric
A-bilinear map g : M ×M → A; i.e.

g(m1,m2) = g(m2,m1) g(fm1,m2) = fg(m1,m2)

g(m1 +m2,m3) = g(m1,m3) + g(m2,m3)

g(m1, ·) : M → M∗ is bijective (for m1 ̸= 0)

for m1,m2,m3 ∈ M and f ∈ A. Note: I haven’t imposed “positive
definite”. This is a pseudo-Riemannian metric.
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Hermitian forms on modules

Generalizing metrics to noncommutative algebras, one has to replace the
symmetry condition g(m1,m2) = g(m2,m1), which is far too restrictive
for a noncommutative algebra.

Definition

Let M be a left A-module. A map h : M ×M → A is called a hermitian
form on M if

h(m1 +m2,m3) = h(m1,m3) + h(m2,m3)

h(am1,m2) = ah(m1,m2)

h(m1,m2)
∗ = h(m2,m1).

Moreover, we say that a hermitian form h is invertible if h(m, ·) : M → M∗

is bijective for all m ∈ M (m ̸= 0).

Thus, the (pseudo-)Riemannian metric is replaced by a (invertible)
hermitian form in noncommutative geometry.
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Hermitian forms on free and projective modules
Let An be a free (left) A-module with basis {ei}ni=1. A hermitian form h is
defined as

h(m, n) = h(miei , n
jej) = mihij(n

j)∗

(summation from 1 to n implied) arbitrary hij ∈ A such that h∗ij = hji .

For a free module, invertibility is equivalent to the existence of hij ∈ A s. t.

hijhjk = δik1.

Thus, it is easy to construct hermitian forms on free modules. By
restricting to the image of a projector p : An → An (p2 = p), one can
construct hermitian forms on projective modules.

Proposition (A. 2021)

Let h be a hermitian form on a finitely generated (left) projective
A-module M with generators {ei}ni=1 and set hij = h(ei , ej). Then h is
invertible if and only if there exists hij ∈ A such that hijh

jkek = ei for
i = 1, . . . , n.
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Metric connections

In Riemannian geometry, a connection is compatible with the metric if

X
(
g(m1,m2)

)
= g(∇Xm1,m2) + g(m1,∇Xm2)

for m1,m2 ∈ M and X a vector field. Similarly, one defines a connection
on a left A-module to be compatible with a hermitian form h if

∂h(m1,m2) = h
(
∇∂m1,m2

)
+ h

(
m1,∇∂∗m2

)
where ∂∗(a) =

(
∂(a∗)

)∗
.

Theorem (A. 2021)

Let M be a finitely generated projective A-module and let h be an
invertible hermitian form on M. Then there exists a connection on M
compatible with h.
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Torsion of a connection

For a connection on the tangent bundle of a manifold, the torsion is
defined as

T (X ,Y ) = ∇XY −∇YX − [X ,Y ]

for X ,Y ∈ X (vector fields). On a vector bundle there is no canonical way
of defining torsion, but one can do it relative to an anchor map φ : X → M

Tφ(X ,Y ) = ∇Xφ(Y )−∇Yφ(X )− φ([X ,Y ]).

In noncommutative geometry, one can introduce

Tφ(∂1, ∂2) = ∇∂1φ(∂2)−∇∂2φ(∂1)− φ([∂1, ∂2])

for ∂1, ∂2 ∈ Der(A) and φ : Der(A) → M.
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Noncommutative Levi-Civita connections

Given

∗-algebra A
Lie algebra of derivations g ⊆ Der(A)

A-module M

invertible hermitian form h on M

anchor map φ : g → M

one can ask if there exists a torsion free connection on M compatible with
h; i.e. a connection ∇ om M such that

∂h(m1,m2) = h
(
∇∂m1,m2

)
+ h

(
m1,∇∂∗m2

)
Tφ(∂1, ∂2) = ∇∂1φ(∂2)−∇∂2φ(∂1)− φ([∂1, ∂2]) = 0

for ∂, ∂1, ∂2 ∈ g and m1,m2 ∈ M? Furthermore, if such a “Levi-Civita
connection” exists, is it unique?
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Pseudo-Riemannian calculi

Without further assumptions, neither existence nor uniqueness of a
Levi-Civita connection is guaranteed. Over the last 10 years I’ve been
interested in understanding under what assumptions such connections
exist, and when they are unique.

Let Mφ ⊆ M denote the image of φ in M. Assume that

Mφ generates M as an A-module,

h(E ,E ′) = h(E ,E ′)∗ for E ,E ′ ∈ Mφ

h
(
E ,∇∂E

′)∗ = h
(
E ,∇∂E

′) for E ,E ′ ∈ Mφ and ∂ ∈ g.

Theorem (A., Wilson 2017)

Under the above assumptions, there exist at most one Levi-Civita
connection on M.

It is easy to show that Levi-Civita connection exist on free modules.
However, what about projective? Not so clear for the moment.
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