Graded Ring Theory and Leavitt Path Algebras

Daniel Lännström

LiU Algebra Seminars

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- ④ Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
- 9 Research: algebraic Cuntz-Pimsner rings

A ring R is a set equipped with two binary operations: addition and multiplication. (R, +) is an abelian group and (R, *) is a semigroup. Moreover, a(b + c) = ab + ac and (b + c)a = ba + ca for all $a, b, c \in R$.

- Not necessarily equipped with a multiplicative identity element! Also called: Rng.
- Always associative
- Often: "local" multiplicative identity elements. Eg. s-unital rings.

Directed graph:

Vertices: v_0, v_1, v_2, v_3 Edges: f_0, f_1, f_2, f_3 . Start and range: e.g. $s(f_0) = v_0, r(f_0) = v_1$.

Definition

A directed graph $E = (E^0, E^1, s, r)$ is two sets E^0, E^1 and two maps $s, r \colon E^1 \to E^0$.

Path algebras II

Paths: sequence of edges (left to right) $\alpha = f_0 f_2 f_1$.

 $\beta = \mathbf{f_1}\mathbf{f_2}.$

 $Multiplication = path \ concatenation$

Consider $\gamma = f_1, \delta = f_2.$

There is a trend to obtain algebraic analogues of C^* -algebras (roots in the works of von Neumann and Kaplansky)

C^* -algebra	Algebra
Cuntz C^* -algebra	Leavitt algebra
Graph C^* -algebra	Leavitt path algebra
Cuntz-Pimsner C*-algebra	Algebraic Cuntz-Pimsner ring
Groupoid C*-algebra	Steinberg algebra
Crossed products by partial actions	Unital partial crossed products

- Leavitt path algebras (introduced by Ara, Moreno and Pardo 2004 and by Abrams and Aranda Pino 2005)
- **2** algebraic Cuntz-Pimsner rings (introduced by Carlsen and Ortega, 2008)

Some of these analogues are non-commutative group graded algebras! Special classes of group graded rings:

- strongly graded rings (studied by Dade et. al 1980s)
- epsilon-strongly graded rings (introduced by Nystedt, Öinert and Pinedo 2016)
- nearly epsilon-strongly graded rings (introduced by Nystedt and Öinert 2018)

- A ring is associative but not necessary equipped with a multiplicative identity element.
- A ring with a multiplicative identity element $1 \neq 0$ is called *unital*. Note that the trivial ring is not unital!
- $\textcircled{O}\ \mathbb{Z}$ will be used to denote the infinite cyclic group.

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- ④ Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
 - 9 Research: algebraic Cuntz-Pimsner rings

Example

Consider the ring of compactly supported real-valued continous functions with point-wise multiplication. No multiplicative identity element!

Definition

A ring *R* is called *s*-unital if $x \in xR \cap Rx$ for every $x \in R$.

Remark

If R is s-unital, then $R^2 = R$. In other words, R is an idempotent ring.

Example

 $R = 2\mathbb{Z}$ is a ring which does not admit a multiplicative identity element. $R^2 = 4\mathbb{Z} \subsetneq R$. Thus R is not s-unital.

Proposition

The ring R is s-unital if and only if for all $n \in \mathbb{N}$ and all $r_1, r_2, \ldots, r_n \in R$ there is some $e \in R$ such that $er_i = r_i = r_i e$ for all $i \in \{1, 2, \ldots, n\}$.

Definition

We say that R is *locally unital* if for all $n \in \mathbb{N}$ and all $r_1, r_2, \ldots, r_n \in R$ there is some idempotent $e \in R$ such that $er_i = r_i = r_i e$ for all $i \in \{1, \ldots, n\}$.

Example

The previous example is s-unital but NOT locally unital.

A ring R is called *von Neumann regular* if for every $a \in R$ there exists some $x \in R$ such that a = axa.

Example

A field is regular, $\ensuremath{\mathbb{Z}}$ is not regular.

Proposition

(Ánh, Márki, 1987) Every von Neumann regular ring is locally unital.

• Let
$$e, e' \in R$$
. Put $e \lor e' := e + e' - ee'$.

2 If e, f are idempotents of R, then they are called *orthogonal* if ef = fe = 0.

Definition

(Abrams, 1983) Let *E* be a set of commuting idempotents of *R* which is closed under the \lor -operator. Then *E* is called *a set of local units* for *R* if for all $r \in R$ there is some $e \in E$ such that er = r = re.

Proposition

If a ring R admits a set of local units, then R is locally unital.

(Fuller, 1976) The ring R is said to have enough idempotents in case there exists a set $\{e_i\}_{i \in I}$ of orthogonal idempotents such that $R = \bigoplus_{i \in I} Re_i = \bigoplus_{i \in I} e_i R$. The set $\{e_i\}$ is called a complete set of idempotents.

Example

Let R be a unital ring. Consider the external direct sum $S = \bigoplus_{\mathbb{Z}} R$. S becomes a non-unital ring with component-wise addition and multiplication. Fix $i \in \mathbb{Z}$. For $j \in \mathbb{Z}$, put

$$e_i(j) := egin{cases} 1_R & ext{ if } i=j \ 0_R & ext{ otherwise} \end{cases}$$

The set $\{e_i\}_{i \in \mathbb{Z}}$ is a complete set of idempotents for *S*.

Let R be a unital ring. Consider generalized $\mathbb{N} \times \mathbb{N}$ matrices with only finitely many non-zero entries. The generalized matrix ring $M_{\mathbb{N}}$ has enough idempotents but is not unital.

Summary:

 $\{ \text{ unital rings } \} \subsetneqq \{ \text{ rings with enough idempotents } \} \subsetneqq \{ \text{ locally unital rings } \} \subsetneqq \\ \subseteq \{ \text{ s-untial rings } \} \subsetneqq \{ \text{ rings } \}$

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
- 9 Research: algebraic Cuntz-Pimsner rings

- Introduced by Ara, Moreno and Pardo 2004 and by Abrams and Aranda Pino 2005.
 Algebraic analogue of graph C*-algebras.
- 2 Let R be a (possibly non-commutative) unital ring and let E be a directed graph. Associate an R-algebra $L_R(E)$ with the graph E.
- Many rings are realizable as Leavitt path algebras
- Focus has been on coefficients in a field.

Conjecture (Abrams-Tomforde)

Let E, F be directed graphs. If $L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)$ as rings, then $C^*(E) \cong C^*(F)$ as C^* -algebras.

Let R be a ring and $E = (E^0, E^1, s, r)$ be a directed graph. The *Leavitt path algebra* attached to E with coefficients in R is the free associative R-algebra generated by the symbols:

{v | v ∈ E⁰},
 {f | f ∈ E¹},
 {f^{*} | f ∈ E¹}.

• • •

. . .

subject to the following relations:

•
$$v_i v_j = \delta_{i,j} v_i$$
 for all $v_i, v_j \in E^0$,

•
$$s(f)f = fr(f) = f$$
 and $r(f)f^* = f^*s(f) = f^*$ for all $f \in E^1$,

•
$$f^*f' = \delta_{f,f'}r(f)$$
 for all $f, f' \in E^1$,

• $\sum_{f \in E^1, s(f) = v} ff^* = v$ for all $v \in E^0$ for which $s^{-1}(v)$ is non-empty and finite. We let R commute with the generators.

- A path is a sequence $\alpha = f_1 f_2 \dots f_n$ such that $s(f_{i+1}) = r(f_i)$ for $i \in \{1, \dots, n-1\}$.
- **2** A ghost path is a sequence $\beta^* = f_n^* f_{n-1}^* \dots f_1^*$. 'backwards-path'.

Proposition

Let R be a unital ring and let E be a directed graph. Then

 $L_R(E) = Span_R\{\alpha\beta^* \mid \alpha, \beta \in Path(E), r(\alpha) = r(\beta)\}.$

Leavitt path algebras: Examples I

Ex: Consider the LPA associated with

Elements in $L_R(E)$: $\alpha^* = f_1^* f_2^* f_0^* \in L_R(E)$ $v_0 \in L_R(E)$ $\gamma = f_0 \in L_R(E)$

 $\alpha^* \gamma = f_1^* f_2^* f_0^* f_0 = f_1^* f_2^* r(f_0) = f_1^* f_2^*.$

$$A_1: \bullet_v$$

In this case, $L_R(A_1) \cong Rv \cong R$.

Example $E_1: \qquad \stackrel{f}{\underset{\bullet_{v}}{\frown}}$ In this case, $L_R(E_1) \cong_{\phi} R[x, x^{-1}]$ via the map defined by $\phi(v) = 1_R, \phi(f) = x, \phi(f^*) = x^{-1}$.

$$A_2: \qquad \bullet_{v_1} \xrightarrow{f} \bullet_{v_2}$$

In this case, $L_R(A_2) \cong M_2(R)$.

Generalization:

Example

$$A_n: \qquad \bullet_{v_1} \longrightarrow \bullet_{v_2} \dots \dots \longrightarrow \bullet_{v_{n-1}} \longrightarrow \bullet_{v_n}$$

In this case, $L_R(A_n) \cong M_n(R)$.

Leavitt path algebras: Examples IV

The previous graphs have all been finite, but we also allow infinite graphs!

Example

$$E'': \bullet_{v_1} \xrightarrow{(\infty)} \bullet_{v_2}$$

Take $n \ge 2$. Let R_n denote the rose with n petals graph having one vertex and n loops. Then, $L_{\mathcal{K}}(R_n) \cong L_{\mathcal{K}}(1, n)$ where $L_{\mathcal{K}}(1, n)$ is the Leavitt algebra of type (1, n).

Example

Consider the Toeplitz graph:

$$\Xi_T: \qquad \stackrel{e}{\bigoplus}_{u} \xrightarrow{f} \bullet_v$$

Then $L_{\kappa}(E)$ is isomorphic to the algebraic Toeplitz K-algebra investigated by Jacobson in 1950.

Direct limits of graphs:

Example $A_{\mathbb{N}}: \quad \bullet_{v_1} \longrightarrow \bullet_{v_2} \dots \longrightarrow \bullet_{v_{n-1}} \longrightarrow \dots$ In this case, $L_R(A_{\mathbb{N}}) \cong \lim_{n \in \mathbb{N}} M_n(R) = M_{\mathbb{N}}(R).$

Conjecture

(Kaplansky, 1970) Is a regular prime ring necessarily primitive? It seems unlikely that the answer is affirmative, but a counter-example may have to be weird.

A first example was given in 1977 by Domanov. The theory of LPAs allows for a infinite class of examples to be constructed.

Definition

(Abrams, Bell, Rangaswamy, 2014) Let X be a set and let $E_F(X)$ denote all finite subsets of X. The graph $E_F(X)$ is defined as $E_F(X)^0 = E_F(X)$ and $E_F(X)^1 = \{(A, A') \mid A \neq A'\}$.

Proposition

(Abrams, Bell, Rangaswamy, 2014) Let X be any uncountable set and let K be any field. The Leavitt path algebra $L_K(E_F(X))$ is prime, non-primitive and von Neumann regular.

Unital Leavitt path algebras

Proposition ([1, Lem. 1.2.12)

Let R be a unital ring and let E be a directed graph. Consider the Leavitt path algebra $L_R(E)$. Then $L_R(E)$ is a unital ring if and only if E has finitely many vertices. In this case,

$$1_{L_R(E)} = \sum_{v \in E^0} v.$$

Example

The ring $L_R(E')$ is not unital.

Proposition

The Leavitt path algebra $L_{K}(E)$ is a ring with enough idempotens.

The canonical \mathbb{Z} -grading of $L_R(E)$ is defined by,

$$\deg(\alpha\beta^*) = \operatorname{len}(\alpha) - \operatorname{len}(\beta).$$

Hazrat [hazrat2013graded] gave a criteria for the grading to be strong. Later, extended by Nystedt and Öinert [nystedt2017epsilon].

 $\begin{array}{cccc} E \text{ finite with no sinks} &\Rightarrow & E \text{ finite} &\Rightarrow & E \text{ a graph} \\ & & & & & \\ & & & & \\ L_R(E) \text{ unital strong} &\Rightarrow & L_R(E) \epsilon \text{-strong} &\Rightarrow & L_R(E) \text{ nearly } \epsilon \text{-strong} \end{array}$

Figure: The graded structure of Leavitt path algebras.

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
- 9 Research: algebraic Cuntz-Pimsner rings

Group graded rings

Definition

Let G be a group and let S be a ring. A grading of S is a collection of additive subsets of S, $\{S_g\}_{g\in G}$, such that

$$S = \bigoplus_{g \in G} S_{g}$$

and $S_g S_h \subseteq S_{gh}$ for all $g, h \in G$. The ring S is called a G-graded ring. S_e is called the principal component.

Proposition

Let S be a G-graded ring. Then S_e is a subring of S.

Remark

A given ring can in general be equipped with numerous different gradings.

The Laurent polynomial ring is $\mathbb{Z}\text{-}\mathsf{graded}$ by,

$$R[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} Rx^i.$$

Principal component:
$$(R[x, x^{-1}])_0 = R$$
.

Example

(The group ring) Let G be a group and let R be a unital ring. The group ring $R[G] = \bigoplus_{g \in G} R\delta_g$ is naturally G-graded.

(Dade, 1980) A G-grading $\{S_g\}$ of a ring S is called *strong* if $S_gS_h = S_{gh}$ holds for all $g, h \in G$. The ring S is called *strongly* G-graded.

Example

Let R be a unital ring. Then $(Rx^i)(Rx^j) = Rx^{i+j}$ for all $i, j \in \mathbb{Z}$. Hence, the Laurent polynomial ring $R[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} Rx^i$ is strongly \mathbb{Z} -graded.

Example

Let G be a group and let R be a unital ring. The group ring R[G] is strongly G-graded.

(Skew group ring) Let R be a unital ring, let G be a group and let $\phi: G \to \operatorname{Aut}(R)$ be a group homomorphism. The skew group ring $R \star_{\phi} G$ has the same additional structure as R[G]. Multiplication is defined by $(a\delta_g)(b\delta_h) = a\phi(g)(b)\delta_{gh}$.

Example

(Twisted group ring) Let R be a unital ring, let G be a group and let $\alpha: G \times G \to U(R)$ be a map satisfying (i) $\alpha(g, h)\alpha(gh, s) = \alpha(h, s)\alpha(g, hs)$ and (ii) $\alpha(g, e) = \alpha(e, g) = 1_R$ for all $g, h, s \in G$. The twisted group ring $R \star^{\alpha} G$ has the same additional structure as R[G]. Multiplication is defined by $(a\delta_g)(b\delta_h) = ab\alpha(g, h)\delta_{g,h}$.

skew + twist = algebraic crossed product. Studied by Dade, Passman, et al ca. 1980s.

Strongly graded rings: examples

Definition

A crossed system is a quadruple (R, G, σ, α) , where R is a unital ring, G a group, $\sigma: G \to \operatorname{Aut}(R)$ a group homomorphism, $\alpha: G \times G \to U(R)$ a map satisfying the following conditions:

- $\sigma_g(\sigma_h(a)) = \alpha(g,h)\sigma_{gh}(a)\alpha(g,h)^{-1}$
- $a(g,h)\alpha(gh,s) = \sigma_g(\alpha(h,s))\alpha(g,hs)$
- 3 $\alpha(g, e) = \alpha(e, g) = 1_R$

for all $g, h, s \in G$ and $a \in R$.

Definition

Given a crossed system (R, G, σ, α) we define the *algebraic crossed product* $R \star_{\sigma}^{\alpha} G$ with the same additive structure as R[G] but with multiplication defined by

 $(a\delta_g)(b\delta_h) = a\sigma_g(b)\alpha(g,h)\delta_{gh}.$
Remark

Dade gave a categorical characterization of strongly graded ring (Dade's theorem). Categorical connection between the principal component S_e and S.

Lemma

Let S be a G-graded ring. Then $S_g S_{g^{-1}}$ is an ideal of S_e .

Proposition

A unital G-graded ring $S = \bigoplus_{g \in G} S_g$ is strongly G-graded if and only if $1_S \in S_g S_{g^{-1}}$ for every $g \in G$.

Definition

Let S be a unital G-graded ring. Let M be a unital left S-module and let $\{M_x\}_{x\in G}$ be a family of additive subsets of M satisfying $M = \bigoplus_{g \in G} M_x$ and $S_g M_x \subseteq M_{gx}$. Then the pair $(M, \{M_x\})$ is called a graded left S-module.

Let S - gr denote the category of graded left S-modules.

Example

Let K be a field and consider the polynomial ring S := K[x]. Recall that S is \mathbb{Z} -graded by putting $S_n = Kx^n$ for $n \ge 0$ and $S_n := \{0\}$ for n < 0. Consider the ideal I generated by x. I is a graded left S-module.

Dade's Theorem (II)

A functor Ind: $S_e - \text{mod} \rightarrow S - \text{gr}$ is defined as follows. For $N \in S_e - \text{mod}$ and $N_1, N_2 \in S_e - \text{mod}, f \in \text{Hom}_{S_e}(N_1, N_2)$

$$Ind(N) := (S \otimes_{S_e} N, \{S_g \otimes_{S_e} N\}_{g \in N})$$
$$Ind(f) := id_S \otimes_{S_e} f$$

Theorem

(Dade, 1980) Let S be a unital G-graded ring. Then S is strongly G-graded if and only if Ind is a equivalence of categories.

Remark

If S is unital strongly graded then $S - \mathrm{gr} \simeq S_e - \mathrm{mod}$. However, the converse is not true.

Introduced by Nystedt, Öinert and Pinedo.

- The class of strongly graded rings too small to include all our examples.
- Natural generalization of unital strongly graded rings.
- Some results for strongly graded rings seems to generalize to epsilon-strongly graded rings!

Definition

Let *R* be a ring. An ideal *I* of *R* is called *unital* if *I* has a multiplicative identity element $e \in I$ such that ex = xe = x for every $x \in I$.

Definition (Nystedt, Öinert, Pinedo, 2016)

Let S be a G-graded ring. If $S_g S_{g^{-1}}$ is a unital ideal of S_e for every $g \in G$,

$$S_g S_h = S_g S_{g^{-1}} S_{gh} \qquad \forall g, h \in G$$

and,

$$S_g S_h = S_{gh} S_{h^{-1}} S_h \qquad orall g, h \in G.$$

Then S is called *epsilon-strongly G-graded*.

(1)

(2)

Remark

unital strongly graded \implies epsilon-strongly graded.

Remark

The multiplicative identity element of $S_g S_{g^{-1}}$ is denoted by ϵ_g . Note that we might have $\epsilon_g = 0$ for some $g \in G$.

Theorem (Nystedt, Öinert, Pinedo)

Let S be an epsilon-strongly G-graded ring. Then S is strongly G-graded if and only if $\epsilon_g = 1_S$ for every $g \in G$.

Example

Consider the \mathbb{Z} -grading of the ring $M_2(\mathbb{C})$ given by,

$$egin{aligned} (M_2(\mathbb{C}))_0 &= egin{pmatrix} \mathbb{C} & 0 \ 0 & \mathbb{C} \end{pmatrix}, \ (M_2(\mathbb{C}))_{-1} &= egin{pmatrix} 0 & 0 \ \mathbb{C} & 0 \end{pmatrix}, \ (M_2(\mathbb{C}))_1 &= egin{pmatrix} 0 & \mathbb{C} \ 0 & 0 \end{pmatrix}, \end{aligned}$$

and $(M_2(\mathbb{C}))_i = \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \}$ for |i| > 1.

Example

Note that,

$$(M_2(\mathbb{C}))_1(M_2(\mathbb{C}))_{-1}=egin{pmatrix}\mathbb{C}&0\0&0\end{pmatrix},(M_2(\mathbb{C}))_{-1}(M_2(\mathbb{C}))_1=egin{pmatrix}0&0\0&\mathbb{C}\end{pmatrix},$$

are unital ideals of $(M_2(\mathbb{C}))_0$ with multiplicative identity elements:

$$\epsilon_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \epsilon_{-1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Furthermore, a routine check shows that the relations hold. Thus, $M_2(\mathbb{C})$ is epsilon-strongly \mathbb{Z} -graded.

Epsilon-strongly graded rings: Properties

Proposition (Lännström, 2018)

If S is a non-trivial epsilon-strongly G-graded ring, then S is unital.

Example ([hazrat2013graded])

Let R be a unital ring and let E be the following directed graph.

Then $L_R(E)$ is strongly \mathbb{Z} -graded but not unital.

Examples of epsilon-strongly graded rings:

- unital strongly graded rings (studied by Dade, Passman, et al during 1980s)
- unital partial crossed products (Nystedt, Öinert, Pinedo, 2016 [nystedt2016epsilon]),
- S Leavitt path algebras of finite graphs (Nystedt, Öinert, 2017),
- orner skew Laurent polynomial rings (Lännström, 2019).

Epsilon-strongly graded rings: Equivalent characterizations

Proposition

(Nystedt, Öinert, Pinedo 2018) Let S be a G-graded ring. If, for every $g \in G$ and $s \in S_g$ there exist some $\epsilon_g \in S_g S_{g^{-1}}, \epsilon'_g \in S_{g^{-1}} S_g$ such that $\epsilon_g s = s = s \epsilon'_g$, then S is epsilon-strongly G-graded.

Definition

Let S be a G-graded ring. If $S_g = S_g S_{g^{-1}} S_g$ for every $g \in G$, then S is called symmetrically G-graded.

Proposition

(Nystedt, Öinert, Pinedo 2018) Let S be a G-graded ring. Then S is epsilon-strongly G-graded if and only if S is symmetrically G-graded and $S_g S_{g^{-1}}$ is an unital ideal for every $g \in G$.

Definition (Nystedt, Öinert, 2019)

Let S be a G-graded ring. If, for every $g \in G$ and $s \in S_g$ there exist some $\epsilon_g(s) \in S_g S_{g^{-1}}, \epsilon_g(s)' \in S_{g^{-1}} S_g$ such that $\epsilon_g(s)s = s = s\epsilon_g(s)'$, then S is called *nearly epsilon-strongly G-graded*.

Remark

Let *E* be a infinite graph. Then the canonical \mathbb{Z} -grading of $L_R(E)$ is nearly epsilon-strongly \mathbb{Z} -graded but not epsilon-strongly \mathbb{Z} -graded.

Proposition

(Nystedt, Öinert, 2019) Let S be a G-graded ring. Then S is nearly epsilon-strongly G-graded if and only if S is symmetrically G-graded and $S_g S_{g^{-1}}$ is a s-unital ideal for every $g \in G$.

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- 4 Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
 - 9 Research: algebraic Cuntz-Pimsner rings

Example

Let R be a ring and consider the Laurent polynomial ring $R[x, x^{-1}]$ with the standard \mathbb{Z} -grading. That is,

$$R[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} Rx^i.$$

Consider the quotient group $\mathbb{Z}/2\mathbb{Z}$ of \mathbb{Z} . There is a naturally induced $\mathbb{Z}/2\mathbb{Z}$ -grading of $R[x, x^{-1}]$ given by:

$$R[x,x^{-1}] = \Big(\bigoplus_{i \in 2\mathbb{Z}} Rx^i\Big) \oplus \Big(\bigoplus_{i \in 1+2\mathbb{Z}} Rx^i\Big) = S_{[0]} \oplus S_{[1]},$$

where [0] denotes the class $0 + 2\mathbb{Z}$ and [1] denotes the class $1 + 2\mathbb{Z}$.

(3)

Definition

Let G be a group and let N be a normal subgroup of G. Let $S = \bigoplus_{g \in G}$ be a G-graded ring. For every class $C \in G/N$, put

$$S_C := \bigoplus_{g \in C} S_g.$$

Lemma

 $\{S_C\}_{C \in G/N}$ is a G/N-grading of S.

The G/N-grading $\{S_C\}_{C \in G/N}$ is called the *induced quotient group grading* of S. If $\{S_g\}_{g \in G}$ is a strong G-grading, then $\{S_C\}_{C \in G/N}$ is strong!

Proposition (Nystedt, Oinert, Pinedo 2016)

The unital partial crossed products are epsilon-strongly graded. In particular, unital partial skew group rings are epsilon-strongly graded.

Proposition (Lännström, 2018)

There is a unital partial skew group ring by \mathbb{Z} such that the induced $\mathbb{Z}/2\mathbb{Z}$ -grading is not epsilon-strong.

Theorem (Lännström, 2018)

Let S be an epsilon-strongly G-graded ring. If S_e is left (right) noetherian, then, for any normal subgroup of N, the induced G/N-grading is epsilon-strong.

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- ④ Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- 🕜 Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
- 9 Research: algebraic Cuntz-Pimsner rings

Definition

A unital ring R is called left (right) noetherian if for any ascending chain of left (right) ideals,

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots,$

there exists some integer k > 0 such that $I_k = I_{k+1} = I_{k+2} = I_{k+3} = \dots$

ldea 1

("Hilbert Basis Theorem") Under certain conditions on the grading, the ring S is noetherian if and only if S_e is noetherian.

Theorem

(Lännström, 2018, cf. Bell (1987) [bell1987localization]) Let G be a polycyclic-by-finite group and let S be an epsilon-strongly G-graded ring. Then, S is left/right noetherian if and only if S_e is left/right noetherian.

Remark

- Bell (1987) [bell1987localization] proved the analogous statement for strongly graded rings.
- The proof relies on the theorem from Paper A.

Theorem

(Lännström, 2018) Let G be a torsion-free group and let S be an epsilon-strongly G-graded ring. Then, S is left/right artinian if and only if S_e is left/right artinian and $S_g \neq \{0\}$ for finitely many $g \in G$.

Application 1

Characterizations of noetherian and artinian unital partial crossed products. Generalizes previous work on partial skew group rings by Carvalho, Cortes, Ferrero.

Application 2

Application to Leavitt path algebras.

 \mathbb{Z} is both polycyclic-by-finite and torsion-free. Hence, we can apply the above theorems to the special case of Leavitt path algebras of finite graphs.

For coefficients in a field: (Abrams, Ara, Siles Molina) For coefficients in a commutative ring: (Steinberg 2018 [steinberg2018chain])

Theorem (Lännström, 2018)

Let R be a ring and E a directed graph. Then the following assertions hold.

- $L_R(E)$ is left (right) noetherian if and only if R is left (right) noetherian and E is a finite graph containing no cycles with exits.
- L_R(E) is left (right) artinian if and only if R is left (right) artinian and E is a finite acyclic graph.

Conditions on E + conditions on $R \iff$ conditions on $L_R(E)$

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- ④ Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
 - 9 Research: algebraic Cuntz-Pimsner rings

Definition (Von Neumann, 1936)

A unital ring R is called *von Neumann regular* if for each $a \in R$ there is some $x \in R$ such that a = axa.

Generalizes to non-unital rings in an obvious manner.

Definition

A ring R is called *s*-unital if $x \in Rx \cap xR$ for every $x \in R$.

Proposition

Let R be an s-unital ring. The following are equivalent:

1 *R* is von Neumann regular

every finitely generated left (right) ideal is generated by an idempotent

Definition (Năstăsescu, Oystaeyen, 1982 [nastasescu1982graded])

Let $S = \bigoplus_{g \in G} S_g$ be a *G*-graded ring. If, for each $g \in G$ and every $a \in S_g$, there is some $x \in S$ such that a = axa, then *S* is called *graded von Neumann regular*.

Proposition (Hazrat, 2014)

Let S be a G-graded ring with homogeneous local units. Then the following are equivalent:

- S is graded von Neumann regular
- Any finitely generated right (left) graded ideal of S is generated by a homogeneous idempotent.

Definition

A G-grading $S = \bigoplus_{g \in G} S_g$ is called *strong* if $S_g S_h = S_{gh}$ for all $g, h \in G$.

Theorem (Năstăsescu, Oystaeyen, 1982 [nastasescu1982graded])

Let $S = \bigoplus_{g \in G} S_g$ be a unital strongly G-graded ring. Then S is graded von Neumann regular if and only if S_e is von Neumann regular.

Example

Let R be a von Neumann regular ring. Then the group ring R[G] and the Laurent polynomial ring $R[x, x^{-1}]$ are graded von Neumann regular.

Necessary conditions for being graded von Neumann regular

Proposition

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S_e is von Neumann regular.

Proposition (Lännström, 2019)

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S is nearly epsilon-strongly G-graded.

Proof

Take $g \in G$ and $s \in S_g$. We need to find some $\epsilon_g(s) \in S_g S_{g^{-1}}$ and $\epsilon_g(s)' \in S_{g^{-1}} S_g$ such that $\epsilon_g(s)s = s = \epsilon_g(s)'s$. Since S is graded von Neumann regular, there is some $b \in S_{g^{-1}}$ such that s = sbs. Take $\epsilon_g(s) := sb$ and $\epsilon_g(s)' = bs$. Necessary conditions are also sufficient! (cf. Yahya, 1997)

Theorem (Lännström, 2019)

Let $S = \bigoplus_{g \in G} S_g$ be a G-graded ring. Then S is graded von Neumann regular if and only if S is nearly epsilon-strongly G-graded and S_e is von Neumann regular.

Remark

Generalizes Năstăsescu, Oystaeyen theorem for unital strongly graded rings!

Theorem (Hazrat, 2014 [hazrat2014leavitt])

Let K be a field and let E be a directed graph. Then $L_{\mathcal{K}}(E)$ is graded von Neumann regular.

Example

Let R be a unital ring that is not von Neumann regular.

$$A_1: \bullet_v$$

It can be shown that $L_R(E) \cong_{\text{gr}} R$ is graded von Neumann regular if and only if R is von Neumann regular. Hence, $L_R(E)$ is not graded von Neumann regular.

Leavitt path algebras with coefficients in a general unital ring

Main goal of this project:

```
Theorem (Lännström, 2019)
```

Let R be a unital ring and let E be a directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Proof idea:

R von Neumann regular $\rightsquigarrow L_R(E)_0$ is von Neumann regular $\rightsquigarrow L_R(E)$ graded von Neumann regular.

Proposition (Nystedt, Öinert, 2018)

Let *R* be a unital ring. If *E* is a directed graph, then $L_R(E)$ is nearly epsilon-strongly \mathbb{Z} -graded. If *E* is a finite directed graph, then $L_R(E)$ is epsilon-strongly \mathbb{Z} -graded.

- ${ \bullet \hspace{-.5pt} \bullet \hspace{-.5$
- 2 \mathbb{Z} is not von Neumann regular
- By Theorem, for any graph E,
 - $L_{\mathbb{C}}(E)$ is graded von Neumann regular
 - **2** $L_{\mathbb{Z}}(E)$ is **not** graded von Neumann regular

Lemma (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $(L_R(E))_0$ is von Neumann regular if and only if R is von Neumann regular.

Corollary (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Proof.

 $L_R(E)$ is epsilon-strongly Z-graded (Nystedt, Öinert, 2017). $L_R(E)$ is graded von Neumann regular if and only if $(L_R(E)_0)$ is von Neumann regular. By Lemma, $(L_R(E))_0$ is von Neumann regular if and only if R is von Neumann regular. Technical reduction step: Let E be any graph. Then $L_R(E)$ is the direct limit of Leavitt path algebras of finite graphs.

Theorem (Lännström, 2019)

Let R be a unital ring and let E be any (possibly non-finite) directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- ④ Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
 - 9 Research: algebraic Cuntz-Pimsner rings

Definition

A ring R is called prime if for all ideals A, B of R, AB = 0 implies that A = 0 or B = 0.

Theorem (Connell, 1963)

Let R be a unital ring and let G be a group. The group ring R[G] is prime if and only if R is prime and G has no non-trivial finite normal subgroups.

Definition (Passman, 1984)

Let S be a unital strongly G-graded ring. Then G acts on the ideals of S_e by $I^x := S_{x^{-1}}IS_x$. Let H be a subgroup of G. If $I^x = I$ for every $x \in H$, then I is called H-invariant.

Theorem (Passman, 1984)

Let S be a unital strongly G-graded ring. Then S is not prime if and only if there exist:

- subgroups $N \lhd H \subseteq G$ with N finite;
- 2) an H-invariant ideal I of S_e such that $I^{\times}I = \{0\}$ for every $x \in G \setminus H$, and
- **③** nonzero *H*-invariant ideals \tilde{A}, \tilde{B} of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$ and $\tilde{A}\tilde{B} = \{0\}$.
Updated definition:

Definition (L., Lundström, Wagner, Öinert, 2021, cf. Passmann)

Let S be a G-graded ring.

- For a subset $I \subseteq S$ and $x \in G$, we consider the set $I^x := S_{x^{-1}}IS_x$.
- **2** Let *H* be a subgroup of *G*. We say that *I* is *H*-invariant if $I^{x} \subseteq I$ for every $x \in H$.

● Let N be a normal subgroup of H. We say that I is H/N-invariant if $S_{C^{-1}}IS_C \subseteq I$ for every $C \in H/N$.

Not a group action! $(I^x)^y \neq I^{xy}$.

Theorem (L., Lundström, Oinert, Wagner 2021)

Let S be a nearly epsilon-strongly G-graded ring. Then S is not prime if and only if there exist:

- subgroups $N \lhd H \subseteq G$ with N finite;
- ② an H-invariant ideal I of S_e such that $I^{\times}I = \{0\}$ for every $x \in G \setminus H$, and
- nonzero H/N-invariant ideals \tilde{A}, \tilde{B} of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$ and $\tilde{A}\tilde{B} = \{0\}$.

Remark

Let S be a unital strongly G-graded ring. "Passman"-invariant ideal coincide with invariant ideal ($I^x \subseteq I \iff I^x = I$). H/N-invariant implies H-invariant.

A proper G-invariant ideal Q of S_e is called G-prime if for all G-invariant ideals A, B of S_e we have $A \subseteq Q$ or $B \subseteq Q$ whenever $AB \subseteq Q$. The ring S_e is called G-prime if $\{0\}$ is a G-prime ideal of S_e .

Theorem (L., Lundström, Öinert, Wagner, 2021)

Suppose that G is torsion-free and that S is nearly epsilon-strongly G-graded. Then S is prime if and only if S_e is G-prime.

Let *E* be a directed graph. The graph *E* is said to satisfy Condition (MT-3) if for every pair of vertices $u, v \in E^0$, there is some vertex $w \in E^0$ such that there are paths (possibly of zero length) from *u* to *w* and from *v* to *w*. (Confluence vertex *w*).

Example $A_n: \qquad \bullet_{v_1} \xrightarrow{f_1} \bullet_{v_2} \xrightarrow{f_2} \dots \xrightarrow{f_{n-1}} \bullet v_n$ Note that A_n satisfies (MT-3).

The following theorem generalizes work by Abrams-Bell-Rangaswamy and Larki:

Theorem (L., Lundström, Oinert, Wagner 2021) Let $L_R(E)$ be a Leavitt path algebra over a unital ring R. Then $L_R(E)$ is prime if and only if R is prime and E satisfied Condition (MT-3).

Example

Take $E := A_n$ in the above theorem. Then $L_R(A_n) \cong M_n(R)$ is prime if and only if R is prime.

A unital twisted partial action of G on R is a triple $\{\{\alpha_g\}_{g\in G}, \{D_g\}_{g\in G}, \{w_{g,h}\}_{(g,h)\in G\times G}\}$ where for each $g \in G$, the D_g 's are unital ideals of R, $\alpha_g : D_{g^{-1}} \rightarrow D_g$ are ring isomorphisms and for each $(g, h) \in G \times G$, $w_{g,h}$ is an invertible element in $D_g D_{gh}$. For all $g, h \in G$: (P1) $\alpha_e = \mathrm{id}_R$; (P2) $\alpha_g (D_{g^{-1}}D_h) = D_g D_{gh}$; (P3) if $r \in D_{h^{-1}}D_{(gh)^{-1}}$, then $\alpha_g (\alpha_h(r)) = w_{g,h}\alpha_{gh}(r)w_{g,h}^{-1}$; (P4) $w_{e,g} = w_{g,e} = 1_g$; (P5) if $r \in D_{g^{-1}}D_h D_{h/}$, then $\alpha_g (rw_{h,l})w_{g,h/l} = \alpha_g (r)w_{g,h}w_{gh,l}$.

Given a unital twisted partial action of G on R, we can form the *unital partial crossed product* $R \star^w_{\alpha} G = \bigoplus_{g \in G} D_g \delta_g$ where the δ_g 's are formal symbols. For $g, h \in G, r \in D_g$ and $r' \in D_h$ the multiplication is defined by the rule:

(P6) $(r\delta_g)(r'\delta_h) = r\alpha_g(r'1_{g^{-1}})w_{g,h}\delta_{gh}$.

 $R \star_{\alpha}^{w} G$ is an associative ring with a natural epsilon-strong G-grading (Nystedt-Öinert-Pinedo).

Theorem (L., Lundström, Öinert, Wagner, 2021)

Suppose that G is torsion-free and that $R \star_{\alpha}^{w} G$ is a unital partial crossed product. Then $R \star_{\alpha}^{w} G$ is prime if and only if R is G-prime.

Theorem (L., Lundström, Öinert, Wagner, 2021)

The unital partial crossed product $R \star^w_{\alpha} G$ is not prime if and only if there are:

- subgroups $N \lhd H \subseteq G$ with N finite,
- 2) an ideal I of R such that

•
$$\alpha_h(I_{1_{h^{-1}}}) = I_{1_h}$$
 for every $h \in H$,

▶ $I \cdot \alpha_g(I_{1_g^{-1}}) = \{0\}$ for every $g \in G \setminus H$, and

• nonzero ideals \tilde{A} , \tilde{B} of $R \star^w_{\alpha} N$ such that \tilde{A} , $\tilde{B} \subseteq I \cdot (R \star^w_{\alpha} N)$ and $\tilde{A} \cdot 1_h \delta_h \cdot \tilde{B} = \{0\}$ for every $h \in H$.

A proper graded ideal P of S is called graded prime if for all graded ideals A, B of S, we have $A \subseteq P$ or $B \subseteq P$ whenever $AB \subseteq P$.

• Spec_{γ}($L_k(E)$) is used in the construction of the *algebraic filtered K-theory* by Eilers-Restorff-Ruiz-Sørensen, 2021.

Spec_{γ}($L_k(E)$) can be described using so-called admissible pairs (I, H) (Larki). Up next: an alternative description of Spec_{γ}(S) for S being a general nearly epsilon-strongly G-graded rings.

The graded prime spectrum of nearly epsilon-strongly graded rings

Let S be a G-graded ring and let I be an ideal of S. Define $I_e := I \cap S_e$.

Theorem (L., Lundström, Öinert, Wagner 2021, cf. Nastasescu-van Oystaeyen)

Let S be nearly epsilon-strongly G-graded. The map $I\mapsto I_e$ is a bijection

 $\{\text{graded ideals of } S\} \leftrightarrow \{G - \text{invariant ideals of } S_e\}.$

Definition

A proper G-invariant ideal Q of S_e is called G-prime if for all G-invariant ideals A, B of S_e , we have $A \subseteq Q$ or $B \subseteq Q$ whenever $AB \subseteq Q$.

Theorem (L., Lundström, Öinert, Wagner 2021, cf. Nastasescu-van Oystaeyen) Let S be nearly epsilon-strongly G-graded. The map $I \mapsto I_e$ is a bijection

{graded prime ideals of S} \leftrightarrow {G – prime ideals of S_e }.

Question

Is this useful for developing an algebraic filtered *K*-theory for so-called algebraic Cuntz-Pimsner rings (Carlsen-Ortega), or general nearly epsilon-strongly *G*-graded rings?

Table of Contents

Introduction

- 2 s-unital and locally unital rings
- 3 Leavitt path algebras
- ④ Group graded rings
- 5 Research: Induced quotient group gradings
- 6 Research: A Hilbert Basis Theorem
- 🕖 Research: Graded von Neumann regular rings
- 8 Research: Prime group graded rings
- 9 Research: algebraic Cuntz-Pimsner rings

Introduced by Carlsen and Ortega using a categorical approach.

Examples of rings realizable (graded isomorphic) as Cuntz-Pimsner rings:

- Leavitt path algebras (Carlsen, Ortega 2008)
- Orner skew Laurent polynomial ring (Carlsen, Ortega 2008)
- S Certain Steinberg algebras (Clark, Fletcher, Hazrat, Li, 2018)

In 2018, Chirvasitu gave new results about the Cuntz-Pimsner C^* -algebra. Inspired by his results I have obtained:

- a complete classification of strongly Z-graded algebraic Cuntz-Pimsner rings (Lännström, 2019)
- a partial classification of (nearly) epsilon-strongly graded Cuntz-Pimsner rings (Lännström, 2019).

(Carlsen, Ortega, 2011) Let R be a ring. An R-system is a triple (P, Q, ψ) where P and Q are R-bimodules and $\psi: P \otimes_R Q \to R$ is an R-bimodule homomorphism from the balanced tensor product $P \otimes_R Q$ to R.

The Cuntz-Pimsner ring $\mathcal{O}_{(P,Q,\psi)}$ associated to (P,Q,ψ) is defined as a certain universal object. Note that it is not well-defined for every *R*-system.

Remark

Let *E* be a directed graph and *K* a commutative ring. For a certain choice of (P, Q, ψ) we get that $L_{K}(E) \cong_{\text{gr}} \mathcal{O}_{(P,Q,\psi)}$.

Theorem

(Lännström, 2019) Let $\mathcal{O}_{(P,Q,\psi)}$ be an algebraic Cuntz-Pimsner ring of some system (P, Q, ψ) . Then, $\mathcal{O}_{(P,Q,\psi)}$ is unital strongly \mathbb{Z} -graded if and only if

 $\mathcal{O}_{(P,Q,\psi)}\cong_{gr}\mathcal{O}_{(P',Q',\psi')}$

where (P', Q', ψ') is an R'-system satisfying certain conditions.

Remark

The graded isomorphism class of $\mathcal{O}_{(P,Q,\psi)}$ does not uniquely determine (P, Q, ψ) . Example of LPA realizable as Cuntz-Pimsner ring in two different ways.

Theorem

(Lännström, 2019) Let $\mathcal{O}_{(P,Q,\psi)}$ be a Cuntz-Pimsner ring of some system (P, Q, ψ) . If $\mathcal{O}_{(P,Q,\psi)}$ is nearly epsilon-strongly \mathbb{Z} -graded and $\operatorname{Ann}_{\mathcal{O}_0}(\mathcal{O}_1) \cap (\operatorname{Ann}_{\mathcal{O}_0}(\mathcal{O}_1))^{\perp} = \{0\}$, then $\mathcal{O}_{(P,Q,\psi)} \cong_{gr} \mathcal{O}_{(P',Q',\psi')}$ where (P',Q',ψ') is an R'-system and the following assertions are satisfied:

- (P', Q', ψ') is an s-unital R'-system;
- $(\iota_{P'}^{CP}, \iota_{Q'}^{CP}, \iota_{R'}^{CP}, \mathcal{O}_{(P',Q',\psi')}) \text{ is a semi-full covariant representation of } (P', Q', \psi');$
- (P', Q', ψ') satisfies Condition (FS);
- $I_{\psi',\iota_{\mathcal{O}_{\alpha}}^{CP}}^{(k)}$ is s-unital for $k \geq 0$.

Conversely, if (P', Q', ψ') is an R'-system satisfying assertions (a)-(d), then $\mathcal{O}_{(P',Q',\psi')}$ is nearly epsilon-strongly \mathbb{Z} -graded.

Question

Are there any nearly epsilon-strongly \mathbb{Z} -graded Cuntz-Pimsner rings satisfying $\operatorname{Ann}_{\mathcal{O}_0}(\mathcal{O}_1) \cap (\operatorname{Ann}_{\mathcal{O}_0}(\mathcal{O}_1))^{\perp} \neq \{0\}$? It might be possible to remove this condition from Theorem 95.

Thank you for your attention!