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Motivation

•Brain cancer is one of the most common cancer-types worldwide

•Reconstruction of initial cell density may aid cancer research

Tumor growth model for brain cancer [J. D. Murray, 2002]
Reaction-diffusion formalism describes the evolution of tumor cell
density via two biological phenomena – diffusion and proliferation:

∂tu(x, t) − div(D(x)∇u(x, t)) = f(u(x, t)) in Ω × (0,T),
D(x)∇u(x, t) ⋅n(x) = 0 on ∂Ω × (0,T),

where D(x) is a diffusion coefficient, f(u) a proliferation function,
u(x, t) a normalized tumor cell density, and Ω the brain region.

Direct problem – Prediction (well-posed)

Determine a future state of a tumor given its current state, i.e.,
u(x,0) is known and the model is used to compute u(x,T).

Inverse problem – Source localization (ill-posed)

Determine an initial state of a tumor given its current state, i.e.,
ψ(x) ∶= u(x,T) is known and the model is used to compute u(x,0).
This inverse problem is ill-posed since smallmeasurement errormay
have a profound adverse effect on computational errors.

Main contribution: Solving the inverse problem

We propose an iterative method, where the ill-posed problem is
replaced by well-posed problems with multiple regularizing terms.

Sobolev-type cost in non-linear conjugate gradient (NCG)
Given a current state ψ(x) and a set of regularization parameters
m1,m2,μ1,μ2 ≥ 0, one aims to minimize the cost functional

E(u) =m1∥u(⋅,T) −ψ(⋅)∥2L2(Ω) +m2∥∇u(⋅,T) −∇ψ(⋅)∥2L2(Ω)

+μ1∥u(⋅,0)∥2L2(Ω) +μ2∥∇u(⋅,0)∥2L2(Ω)

Given a guesstimate of initial data u(x,0), the direct problem is
solved. Then, the following well-posed adjoint problem is solved:

∂tλ(x, t) + div(D(x)∇λ(x, t)) = f′u(u(x, t))λ(x, t) in Ω × (0,T),
D(x)∇λ(x, t) ⋅n(x) = 0 on ∂Ω × (0,T),

λ(x,T) = (m1 + m̃2Δ)(u(x,T) −ψ(x,T)) in Ω,

The Fréchet derivative of the cost functional is then given by

E′(u) = S(λ(x,0) +μ1u(x,0)) + μ̃2u(x,0), x ∈ Ω,

where the operator S transforms elements of L2-dual to Sobolev
W 1,2-dual. The descent direction is obtained by Fletcher–Reeves
conjugate gradient. The optimal step-length for updating the initial
data estimate u(x,0) is found by solving a sensitivity problem.

Numerical results

Set-up: Brain region Ω and the diffusion coefficient D(x) were
based on segmentation of T1-weighted MR images from BraTS2020
dataset. Proliferation function was logistic, i.e., f(u) = ρu(1 −u).
A tumor with Gaussian cell density was planted at a random position
in the white matter, and grown according to the model.

Coronal brain slice
Tumor at t = 0 (top) and t = T (bottom)

Brain with axial and sagittal slice
Tumor at t = T

The initial state was reconstructed by iteratively minimizing E(u).
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Various error measurements during the reconstruction process

Landweber NCG with L2-cost NCG with Ẇ 1,2-cost NCG withW 1,2-cost
Cell density at t = 0 as reconstructed for different cost functionals E(u)

Conclusion

•Finetuning regularization parameters allows faster convergence,
while keeping numerical stability of the solution.

•Simulation with planted tumors shows potential for our approach.
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