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Motivation

 Brain cancer is one of the most common cancer-types worldwide

» Reconstruction of initial cell density may aid cancer research

Tumor growth model for brain cancer [J. D. Murray, 2002]

Reaction-diffusion formalism describes the evolution of tumor cell
density via two biological phenomena — diffusion and proliferation:

in Qx (0, 7T),
on 0Q x (0, T),

Oru(x,t) —div(D(x)vVu(x,t)) = f(u(x,t))
D(x)Vu(x,t)-n(x)=0

where D(x) is a diffusion coefficient, f(u) a proliferation function,
u(x,t) anormalized tumor cell density, and € the brain region.

Direct problem - Prediction (well-posed)

Determine a future state of a tumor given its current state, i.e.,
u(x,0) is known and the model is used to compute u(x, T).

Inverse problem - Source localization (ill-posed)

Determine an initial state of a tumor given its current state, i.e.,
w(x):=u(x,T)is known and the model is used to compute u(x,0).

This inverse problem is 1ll-posed since small measurement error may
have a profound adverse effect on computational errors.

Main contribution: Solving the inverse problem

We propose an iterative method, where the ill-posed problem 1is
replaced by well-posed problems with multiple regularizing terms.

Given a current state w(x) and a set of regularization parameters
my, Mo, Uy, Uy > 0, one aims to minimize the cost functional

E(u) = my|u(, T) = p(-)[721q) + ma| Vu(, T) = V()] 32,
+ i [u(, 0)[ 7y + Mol VU (-, 0) 720

Given a guesstimate of initial data u(x,0), the direct problem is
solved. Then, the following well-posed adjoint problem is solved:

OA(x,t) +div(D(x)VA(x,t)) = fi,(u(x,t))A(x,t) nQx(0,7T),
D(x)VA(x,t)-n(x)=0 on 90Q x (0, T),
Ax, T)=(mi+mA)(u(x,T)-yw(x,T)) 1nQ,
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The Fréchet derivative of the cost functional is then given by
E'(u) = S(A(x,0) + uyu(x,0)) + flou(x,0), xe€Q.

where the operator S transforms elements of L2-dual to Sobolev
W1l2-dual. The descent direction is obtained by Fletcher—Reeves
conjugate gradient. The optimal step-length for updating the initial
data estimate u(x, 0) is found by solving a sensitivity problem.

Numerical results

Set-up: Brain region  and the diffusion coefficient D(x) were
based on segmentation of T1-weighted MR images from BraTS2020
dataset. Proliferation function was logistic, i.e., f(u) = pu(1 - u).

A tumor with Gaussian cell density was planted at a random position
in the white matter, and grown according to the model.
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The initial state was reconstructed by iteratively minimizing E(u).
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Various error measurements during the reconstruction process
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Conclusion

 Finetuning regularization parameters allows faster convergence,
while keeping numerical stability of the solution.

« Simulation with planted tumors shows potential for our approach.
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