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Overview

@ Riemannian Geometry and Commutative Algebras
© Noncommutative Riemannian Geometry
© Embeddings in NCG

@ Matrix Algebras
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Riemannian Geometry and Commutative Algebras
@0000

(pseudo-)Riemannian Geometry

(X, g) — (pseudo-)Riemannian manifold.
@ X~ — Smooth manifold. Locally "indistinguishable” from R".

@ g — (pseudo-)Riemannian metric. Gives the manifold
geometric structure.

At each point p € X: Tangent space at p = T,X, basically a copy
of R" attached to p.

The tangent bundle TZ = J,c5y TpZ, disjoint union. Vect(X¥)
denotes the module of smooth sections of T2.

Fundamental fact: if A= C*°(X), then Der(A) ~ Vect(X).
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Riemannian Geometry and Commutative Algebras
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The Category (ps-)Rm

Let (ps-)Rm denote "the" category of (pseudo-)Riemannian
manifolds.

@ Objects: (pseudo-)Riemannian manifolds (X, g).

e Morphisms: ¢ : (X1,81) — (X2,82), ¢ is a smooth map from
21 to X5 such that the metric is preserved, i.e.,

"8 = g1 == &2(d«(X), 8:(Y)) = &1(X,Y), X, Y € Vect(Xy).
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Riemannian Geometry and Commutative Algebras
[e]e] Tele]

From Geometric Spaces to Algebras

We note that a morphisrp ¢ (X1,81) — (X2, ) induces an
algebra homomorphism ¢ : C*°(%;) — C*°(X;) by

¢(F)(p) = f(o(p)), p €1

Visually:
Geometry:
X ——— 7Y
Algebra:

Ae—2 B
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Riemannian Geometry and Commutative Algebras
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Two Central Theorems

Theorem (Gelfand)

Let A be a commutative C*-algebra. Then there is a locally
compact Hausdorff space X such that A = Co(X).

.

Theorem (Swan)

Let X be a compact Hausdorff space. Then the category of finitely
generated projective modules over the C*-algebra C(X) of
continuous functions on X is equivalent to the category of
finite-rank vector bundles on X, where the equivalence is
established by sending a vector bundle E to the module of
continuous sections of E.

A

The above theorems give a strong connection between
commutative C*-algebras and geometry, and provide an important
conceptual motivation behind NCG.

6/43



Riemannian Geometry and Commutative Algebras
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Riemannian Geometry over Commutative Algebras

Let A be a commutative *-algebra. Conceptually, we think of it as
C*>°(X) for some unknown, smooth manifold X.

@ Q: How to do " (pseudo-)Riemannian geometry” on A?

@ (possible) A: Use Der(.A)!
Using the natural equivalence between derivations and smooth
sections of the tangent bundle, one defines the metric as a
symmetric, bilinear map g : Der(.A) x Der(A) — A that is
nondegenerate.
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Noncommutative Riemannian Geometry
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The central question

What happens if A is a noncommutative *-algebra? Can we build
a theory of noncommutative geometry in a spirit similar what was
done in the commutative case?
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Noncommutative Riemannian Geometry
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An immediate challenge

e A commutative = Der(.A) has a module structure.
e A noncommutative = Der(.A) does NOT have a module
structure!

Another important difference: if A is commutative, then every
nontrivial derivation O is outer, i.e., it cannot be written on the
form J(a) = xa — ax for some x € A. If A is noncommutative,
then Der(.A) contains a nontrivial inner derivation for each element
that is not central.

How to deal with this?
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Noncommutative Riemannian Geometry
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A Straightforward Approach

From the Serre-Swan theorem: Consider finitely generated
projective (right) A-modules as "noncommutative vector bundles”.

As for derivations: Choose the derivations of interest, and consider
only those.
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Noncommutative Riemannian Geometry
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Metrics

In order to do "geometry” for a noncommutative space, a metric is
essential. From the Serre-Swan theorem: define the metric as
h:Mx M — A for some (right) A-module M.

Classically (when A is commutative): h(mz, ma) = h(my, my) for

all my, my € M. In general, this condition is not feasible to include
if A is noncommutative.
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Noncommutative Riemannian Geometry
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Metrics, continued

A metric h: M x M — A is an invertible hermitian form, i.e.,
Q@ h(my, my + m3) = h(my, m) + h(my, m3) for
my,my, my € M,
@ h(my, mpa) = h(my, my)a for my,my € M and a € A,
@ h(my, my) = h(my, my)* for my, my € M,
Q The map h: M — M* (where M* is the dual of M) such that
h: m— h(m,-), is invertible.
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Noncommutative Riemannian Geometry
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Affine Connections

We define affine connections. Classically, they can be thought of
as "connecting” nearby tangent spaces. We shall view them as
"differentiation of sections of a bundle w.r.t tangent vector fields”.

Let g C Der(.A) and M projective (right) .A-module. A connection
V:gx M — M is such that

Q@ Vo(m+n)=Vgm+ Vgn for myne M and 0 € g,

@ Vg, +9,m=AVygm+ Vymforallme M, A € R and
01,02 € g,

@ Vy(m-a)=(Vgm)-a+ m-9(a) forme M, 0 € gand a € A.
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Noncommutative Riemannian Geometry
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The Levi-Civita connection (classical case)

The classical case:
A connection V : Vect(X) x Vect(X) — Vect(X) is compatible
with the metric g if

X(g(Y,2))=g(VxY,Z)+g(Y,VxZ), X,Y,Z € Vect(X),
and torsion-free if

T(X,Y)=VxY —VyX —[X,Y] =0, X,Y € Vect(X)

Theorem (The fundamental theorem)

Let (X, g) be a (pseudo-)Riemannian manifold. Then there exists
a unique connection V that is torsion-free and compatible with the
metric g.

The connection V is called the Levi-Civita connection.
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Noncommutative Riemannian Geometry
0000000 e000000

The noncommutative setting

Can we state a corresponding result to the fundamental theorem
for NCG?

Metric compatibility:
dh(my, my) = h(Vg-my, my) + h(my,Vamy), 0 € g C Der(A),
where 9*(a) = (9(a*))* for a € A.
What about torsion? An expression
Vmyma — Vp,my — [my, mo]

makes no sense in the noncommutative setting.
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Noncommutative Riemannian Geometry
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The critical piece

We introduce the notion of anchor maps ¢ : g — M, satisfying the
following conditions:

Q ¢ is linear.
@ The module M is generated (as an .A-module) by elements of
the form ¢(9), d € g.

Using ¢, it is possible to define torsion:

Ty(01,02) = Va,(02) — Vi,0(01) — ¢([01,02]), 01,02 € g.

With this we can talk about Levi-Civita connections in NCG, i.e.,
connections compatible with the metric h and with vanishing
torsion.
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Noncommutative Riemannian Geometry
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Existence and uniqueness of Levi-Civita connections

In general, it is not possible to give a result corresponding to the
fundamental theorem of (pseudo-)Riemannian geometry in the
noncommutative case.

However, given some further restrictions it is possible to give
partial results.
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Noncommutative Riemannian Geometry
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Real calculi, definition

Let A be a unital *-algebra.

Definition (current)

A real calculus C4 = (A, g, M, ©) is a structure such that
@ g is a real Lie algebra, and 7 : g — Der(.A) faithfully maps
elements in g to hermitian derivations,
@ M is a (right) A-module,
© ¢ :g— Mis a R-linear map such that M is generated (as an
A-module) by elements of the form ¢(9), d € g.
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Noncommutative Riemannian Geometry
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Extra restrictions

Definition
Q Let C4 = (A, gr, M, ) be a real calculus and let
h: M x M — A be a metric. The pair (Cy4, h) is a real metric
calculus if

h(p(01), (92)) = h(¢(02), ¢(01)), 01,02 € g.

@ If (Ca, h) is a real metric calculus and V:gx M — M is a
connection such that

h(Va,0(92), 9(03))" = h(Va,0(02), p(33)), 0O1,02,03 € g,

then (C4, h, V) is a real connection calculus.

© A real metric calculus (C4, h) is called pseudo-Riemannian if
there exists a Levi-Civita connection V such that (Cy4, h, V) is

- I"QDI rnnnnr‘i’inn PDI{‘IIIIIC

19/43



Noncommutative Riemannian Geometry
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Uniqueness of the Levi-Civita connection

With these restrictions in place, it is possible to prove a uniqueness
result for Levi-Civita connections.

If (Ca, h) is a pseudo-Riemannian calculus, then there is at most
one Levi-Civita connection ¥ such that (Ca, h,V) is a real
connection calculus.

Unlike the classical case, the above theorem does not say anything
about existence of Levi-Civita connections.
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Noncommutative Riemannian Geometry
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Research questions

There are three main directions that have been considered for real
calculi:

@ What classical notions can be given meaning in the context of
pseudo-Riemannian calculi?

@ Are there real metric calculi that are not pseudo-Riemannian?

© When are two real (metric) calculi indistinguishable as
algebraic structures?
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Embeddings in NCG
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The noncommutative torus

The noncommutative torus ng is the *-algebra with unitary
generators U, V satisfying the relation VU = qUV/, where
qg= e2™% Choose derivations 01,02 given by:

n(U)=iU »(U)=0

n(v)=0 (V) =iV.
We have that [d1,d2] = 0.
In analogy with the classical torus T2 being parallellizable, we let
M’ be a free module of rank 2, with basis €], €5. With ¢/(4;) = €/

(i =1,2), the real calculus Cpz = (T2, 9., M ') over T2
represents the noncommutative torus.
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Embeddings in NCG
0®000000000

The noncommutative 3-sphere

The noncommutative 3-sphere 593 is the unital *-algebra with

generators Z, Z*, W, W™ subject to the relations
WZ = qzZW W*zZ = gzw* Wz* = gzZ*W
W*Z* = qZ*W* 7*7 =77* w*w = ww*
Ww* =1 - z2z7*,

Choose derivations 91, 0>, 05 given by:

n(Z) =iz, 0(Z) =0, 05(Z) = ZWW*
A1 (W) =0 H(W)=iW  05(W)=—WZZ*.

We have that [0;,0;] = 0 for all i,j = 1,2,3. In analogy with the
3-sphere S3 being parallellizable, let M be a free module of rank 3
with basis e1, e, e3. Let p(9;) = e (i =1,2,3). Then the real
calculus ng = (Sg,g,r, M, ¢) over 503 represents the

noncommutative 3-sphere.
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Embeddings in NCG
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Embeddings

Let ¢ : (X1,81) < (X2, 42) be an isometric embedding of ¥ into
Y. Then ¢ can be viewed as a morphism in (ps-)Rm with extra
structure:

@ ¢ is an injective immersion, i.e., its pushforward
¢« Vect(X1) — Vect(Xy) is everywhere injective.
@ X, is diffeomorphic to ¢(X1) C X».
Let (Ci, h1) and (Cy, hp) be real metric calculi corresponding to
(X1,841) and (X2, &), respectively. To describe the embedding of
(Ci, h1) into (Cy, hp) we shall define a morphism
(Ca, h2) — (C1, hy) of real metric calculi.
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Embeddings in NCG
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Real Calculus Homomorphism, illustration

A schematic picture of (gzﬁ,i/),dAJ) cCyq — Cyr:

Cq 5 Cu
@ — @
T kK Compeatibility conditions
g 0 ) 1. 6(¢(a)) = (¥ (6)(a))
) A .
¥ A
3. 9(p(¥(9))) = ¢'(9)

e

Extra compatlblllty condition for real metric calculus morphisms

(&,9,4) - (Ca, h) = (Car, 1)
W (¢'(01),¢'(9)) = G(h(W(01), V(5)))-
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Embeddings in NCG
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Embeddings of Real Calculi

Definition

A real calculus homomorphism (qb,v,ZJ,dAJ) : Cq — Cy is called an
embedding of C 4 into Cy4 if ¢ is surjective and there is a
submodule M of M such that M = My & M. Moreover, if (C4, h)
and (Cy/, h') are real metric calculi such that

W (D(m1), P(my)) = ¢(h(my, m2)) for all my, my € My and

M = My & Mg (w.r.t h), then we say that (Cu, i) is
isometrically embedded into (C4, h) by (¢, %, %), and ' is called
the induced metric.
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Embeddings in NCG
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Orthogonal decomposition of V

Let (C4, h) and (C4/, h') be pseudo-Riemannian calculi (with
Levi-Civita connections V and V', resp.) such that

(¢,1,7) : Cq4 — Cy is an isometric embedding of (C4/, h') into
(Ca, h).

Let m e My and let £ € I\/Iul,. One may split V into tangential and
normal parts in the following way:

Vysym = L(6, m) + a(d, m) (Gauss’ formula)
V)€ = —Ae(6) + Ds§  (Weingarten's formula);

a:g x My — /\/IUL, is called the second fundamental form, and
A:g x I\/I\JI; — My is called the Weingarten map.

27/43



Embeddings in NCG
000000e0000

Free real calculi

Let Cq4 = (A, gr, M, ) be a real calculus where g has basis
01, ..., Op, which is such that

QO M~ A" is free,
@ the set ©(01), ..., p(0n) forms a basis of M.
Then C4 is called a free real calculus.

o If (C4,h) is a free real metric calculus, then it is also
pseudo-Riemannian. Conceptually, a free real metric calculus
can be thought of as a parallellizable manifold.

° C-,-g and ng given earlier are both free.

@ Mean curvature can be defined for embeddings of free real
metric calculi in a straightforward manner.
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Embeddings in NCG
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Mean curvature and minimality of an embedding

Definition

Let (Ca, h) and (Ca, h') be pseudo-Riemannian real calculi such
that (Cy, h') is free, and let (¢,1,1) : C4 — C4 be an isometric
embedding of (Cy/, h') into (Cu, h).

For a basis 01, ..., 0x of g/, the mean curvature Hy : M — A’ is:

Hoa(m) = g(h(m, (3}, W(5;)))(H)Y, m e M.

@ The value of H4/(m) is independent of the choice of basis
01,...,0k for all me M,

o Hu(m) =0 for all me My,

@ We say that an embedding is minimal if the mean curvature is
zero, i.e. Hy(m) =0 for all me M.
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Embeddings in NCG
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The noncommutative torus again

The noncommutative torus T92 is the *-algebra with unitary

generators U, V satisfying the relation VU = qUV/, where
q= e27ri0_

Choose derivations 41, 2 given by:

51(U) = iU 52(U) =0
51(V) =0 5(V) = iV.

We have that [d1,d2] = 0.

In analogy with the classical torus T2 being parallellizable, we let
M’ be a free module of rank 2, with basis €], e5. With ¢/(;) = €]
(i =1,2), the real calculus Cpz = (T2, 9., M, ') over T2
represents the noncommutative torus.
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Embeddings in NCG
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The noncommutative 3-sphere again

The noncommutative 3-sphere 593 is the unital *-algebra with

generators Z, Z*, W, W™ subject to the relations
WZ = qzZW W*zZ = gzw* Wz* = gzZ*W
W*Z* = qZ*W* 7*7 =77* w*w = ww*
Ww* =1 - z2z7*,

Choose derivations 91, 0>, 05 given by:

n(Z) =iz, 9(Z) =0, 05(Z) = ZWW*
A1 (W) =0 H(W)=iW  05(W)=—WZZ*.

We have that [0;,0;] = 0 for all i,j = 1,2,3. In analogy with the
3-sphere S3 being parallellizable, let M be a free module of rank 3
with basis e;, e, e3. Let p(9;) = e (i =1,2,3). Then the real
calculus ng = (Sg,g,r, M, ¢) over 503 represents the

noncommutative 3-sphere.
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Embeddings in NCG
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A minimal embedding of TZ into S;

An embedding of T92 into 593 is achieved by the *-homomorphism
¢:S3 — T2 given by ¢(Z) = AU and ¢(W) = uW, where X and
 are nonzero complex constants such that [A|? + |u|?> = 1.

With this choice of ¢, we have ¢ given by ¢(8;) = d; and ) is
then given by 1[3(e,-) =€/ for i = 1,2, and we have that

(¢, ,7) : ng — CTg is an embedding of the noncommutative
torus into the noncommutative 3-sphere.

Proposition

Let h be the standard metric on the noncommutative 3-sphere,
i.e., h(er,e1) = ZZ* h(ez, &) = WW*, h(es, e3) = ZZ* WW*, and
h(ei,ej) = 0if i # j, and let h" be the induced metric on the
noncommutative torus. Then the above embedding is minimal if

Al = |l = 1/V2.
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Matrix Algebras
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Free and Projective Real Calculi

A real calculus Cq = (A, gr, M, p) is called projective if M is
projective.

@ By the Serre-Swan theorem, projective real calculi are
especially interesting to study.

@ Every free real calculus is projective.
o If M is free, this does not necessarily imply that C4 is free.

Given a free real calculus C4 = (A, gr, A", @) and a projection
P: A" — A", then the real calculus C4 = (A, gr, P(A"), P o 3)
can be seen as a "projection” of Cy4.
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Matrix Algebras
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Free and Projective Real Calculi, continued

Proposition

Let C4 = (A, g, M, ¢) be a projective real calculus. Then there
exists a free real calculus C4 = (A, g, A", $) and a projection
P : A" — A" such that C4 is isomorphic to (A, g, P(A"), P o ).

The above proposition can be used to find objects on projective
real calculi by defining them on a free real calculus and then
project them down.
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Free vs. Projective Real Calculi

In a sense, free real calculi are very easy to work with.

@ If (Cu, h) is a free real metric calculus it is automatically
pseudo-Riemannian as well.

o If the real calculi (A, gr, M, ) and (A, g, M, ') are free,
then they are isomorphic.

For general projective real calculi the situation is far more
interesting (and difficult).
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Real Calculi over Matrix Algebras

Let A = Maty(C) for some N. We consider the module M = C",
which is projective and simple. All derivations on A are inner, and
hermitian derivations correspond to unique elements of su(N) of
anti-hermitian traceless matrices. Therefore, let

e g C su(N), with basis Dy, ..., D,,.

o 7:g — Der(A), given by n(D;) = 0; = [D;,-].
Note that since C" is simple, any nonzero R-linear map
¢ g — CN is an anchor map.
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The case g = R(D) C su(N)

Let g = R(D) C su(N), the 1-dimensional Lie algebra generated by
D, and let C4 = (Maty(C), gx, CV, ) be a real calculus. If D is
fixed, then it is possible to calculate the exact number of
nonisomorphic real calculi of the form (Maty(C), gr, CV, ¢),
where ¢ is arbitrary.

Proposition
Let k be the number of distinct eigenvalues of D and let |Cp|
denote the number of pairwise nonisomorphic real calculi of the
form (Matn(C), g, CV, ¢). Then
@ if D is not anti-selfsimilar, then |Cp| = 2k 1,
@ if D is anti-selfsimilar and k is odd, then
|Cp| = Q(k—l)/2(1 + 2(k—1)/2) -1,
@ if D is anti-selfsimilar and k is even, then
|| = PHHENT e 25 =1,
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Metric Anchor Maps for the Matrix Example

With A = Maty(C) and M = CN, all metrics h: M x M — A are
of the form

h(u,v)=x-u'v, u,veCV, xeR\{0},

where T denotes the hermitian transpose. Moreover, the matrix
ulv is self-adjoint if and only if u = p - v for some p € R.

Let Dy, ...D, be a basis of g and let ¢ : g — CN be a metric
anchor map. Since this implies that

h((D;), o(D;)) = h((Di), ¢(D;))T = x - o(D:) (D)),

which implies that there is a unit vector ¥ € CN and
Uiy -s bn € R such that

o(D;) = pito.
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Connections for the Matrix Example

To characterize a generic connection V on g x M, we note that
Vi = Vp, is a linear map for each /. Hence,

Viv=v-X, vech
for a unique matrix X;. The Leibniz condition for V implies that

(V-A)‘X,':V,'(V'A):(V,'V)‘A-i-V'a,'(A)
=v- (XA +v-[D;,A, veCN Ac Maty(C).

This implies that X; = t;15 — D; or, equivalently, that
Viv=tv—v- D,',

where t; € C are arbitrary complex constants. The connection is
compatible with the metric h iff t; = i\; for \; € R, i.e., if X is

antihermitian.
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The case N =2 and g = su(2)

In the matrix example, let N =2 and let
g = R(D1, Dz, D3) = su(2), given by

0 i 0 1 i 0
o= (0 o) 2= (Go) 2 2)

The maps ¢ we consider are of the form ¢(9;) = u;ly, where
0o € C? is nonzero and pi1, 12, u3 € R are not all zero, i.e., ¢ is a
metric anchor map.

With X; = t;1 — D; we have that Vv = v - X; defines a metric

connection iff each t; = i\;, A; € R, implying that X; is
skew-hermitian.
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The matrix example, part 2 (continued)

Letting % € R denote the structure constants of g (i.e.,
[0i,0;] = 1‘,-}‘8;(), we get the torsion T, to be

To(Dj, D) = Vigj— Vpi— (10, 9j]) = 0o Xi — i Xj — £ puic1).

This expression vanishes for all i, j iff ¥y is an eigenvector of

Tij = pjXi — piX, fk pk 1 with eigenvalue \jj = 0. Noting that
R(Nj) = f,-j Lk, |t foIIows that —fkuk = 0. However, solving
these equations for all 7, j, we get

§R()\12) = 2”3 = 0, %()\13) = —2/1,2 = 0, %()\23) = 2;11 =0.

This implies that ¢ = 0, which is not an anchor map. We have
thus proven that if ((Matz(C),su(2)x, C?,¢), h) is a real metric
calculus, then it is not pseudo-Riemannian.
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The general statement for A = Maty(C) and M = CV

The general statement for A = Maty(C) and M = CV is as
follows.

There exists a metric anchor map ¢ : g — CN such that the
resulting real metric calculus ((Maty(C), gr, CV, ), h) is
pseudo-Riemannian if and only if g C su(N) is not semisimple and
there exists a common eigenvector to all matrices in g.

42/43



Matrix Algebras
000000000

The End
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