Riemannian Geometry and Commutative Algebras Noncommutative Riemannian Geometry Embeddings in NCG Matrix Algebras

The Noncommutative Geometry of Real Calculi

Axel Tiger Norkvist

Department of Mathematics, Linköping University

June 15, 2023

Linköpings algebraseminarier 2023

Overview

1 Riemannian Geometry and Commutative Algebras

2 Noncommutative Riemannian Geometry

- 3 Embeddings in NCG
- 4 Matrix Algebras

(pseudo-)Riemannian Geometry

 $(\Sigma, g) - (pseudo-)$ Riemannian manifold.

- Σ Smooth manifold. Locally "indistinguishable" from \mathbb{R}^n .
- g (pseudo-)Riemannian metric. Gives the manifold geometric structure.

At each point $p \in \Sigma$: Tangent space at $p = T_p \Sigma$, basically a copy of \mathbb{R}^n attached to p.

The tangent bundle $T\Sigma = \bigcup_{p \in \Sigma} T_p \Sigma$, disjoint union. Vect (Σ) denotes the module of smooth sections of $T\Sigma$.

Fundamental fact: if $\mathcal{A} = C^{\infty}(\Sigma)$, then $\text{Der}(\mathcal{A}) \simeq \text{Vect}(\Sigma)$.

The Category (ps-)Rm

Let (ps-)Rm denote "the" category of (pseudo-)Riemannian manifolds.

- Objects: (pseudo-)Riemannian manifolds (Σ, g) .
- Morphisms: $\phi : (\Sigma_1, g_1) \to (\Sigma_2, g_2), \phi$ is a smooth map from Σ_1 to Σ_2 such that the metric is preserved, i.e.,

$$\phi^*g_2 = g_1 \Longleftrightarrow g_2(\phi_*(X), \phi_*(Y)) = g_1(X, Y), \quad X, Y \in \mathsf{Vect}(\Sigma_1).$$

From Geometric Spaces to Algebras

We note that a morphism $\phi: (\Sigma_1, g_1) \to (\Sigma_2, g_2)$ induces an algebra homomorphism $\hat{\phi}: C^{\infty}(\Sigma_2) \to C^{\infty}(\Sigma_1)$ by

$$\hat{\phi}(f)(p)=f(\phi(p)), \quad p\in \Sigma_1.$$

Visually:

Two Central Theorems

Theorem (Gelfand)

Let A be a commutative C*-algebra. Then there is a locally compact Hausdorff space X such that $A = C_0(X)$.

Theorem (Swan)

Let X be a compact Hausdorff space. Then the category of finitely generated projective modules over the C^* -algebra C(X) of continuous functions on X is equivalent to the category of finite-rank vector bundles on X, where the equivalence is established by sending a vector bundle E to the module of continuous sections of E.

The above theorems give a strong connection between commutative C^* -algebras and geometry, and provide an important conceptual motivation behind NCG.

Riemannian Geometry over Commutative Algebras

Let \mathcal{A} be a commutative *-algebra. Conceptually, we think of it as $C^{\infty}(X)$ for some unknown, smooth manifold X.

- Q: How to do "(pseudo-)Riemannian geometry" on \mathcal{A} ?
- (possible) A: Use Der(A)!

Using the natural equivalence between derivations and smooth sections of the tangent bundle, one defines the metric as a symmetric, bilinear map $g : Der(\mathcal{A}) \times Der(\mathcal{A}) \to \mathcal{A}$ that is nondegenerate.

The central question

What happens if A is a noncommutative *-algebra? Can we build a theory of noncommutative geometry in a spirit similar what was done in the commutative case?

An immediate challenge

- \mathcal{A} commutative \Rightarrow Der(\mathcal{A}) has a module structure.
- \mathcal{A} noncommutative $\Rightarrow \mathsf{Der}(\mathcal{A})$ does NOT have a module structure!

Another important difference: if \mathcal{A} is commutative, then every nontrivial derivation ∂ is *outer*, i.e., it cannot be written on the form $\partial(a) = xa - ax$ for some $x \in \mathcal{A}$. If \mathcal{A} is noncommutative, then $\text{Der}(\mathcal{A})$ contains a nontrivial inner derivation for each element that is not central.

How to deal with this?

Riemannian Geometry and Commutative Algebras Noncommutative Riemannian Geometry Embeddings in NCG Matrix Algebras

A Straightforward Approach

From the Serre-Swan theorem: Consider finitely generated projective (right) A-modules as "noncommutative vector bundles".

As for derivations: Choose the derivations of interest, and consider only those.

Metrics

In order to do "geometry" for a noncommutative space, a metric is essential. From the Serre-Swan theorem: define the metric as $h: M \times M \to \mathcal{A}$ for some (right) \mathcal{A} -module M.

Classically (when A is commutative): $h(m_1, m_2) = h(m_2, m_1)$ for all $m_1, m_2 \in M$. In general, this condition is not feasible to include if A is noncommutative.

Metrics, continued

A metric $h: M \times M \rightarrow \mathcal{A}$ is an invertible hermitian form, i.e.,

- $h(m_1, m_2 + m_3) = h(m_1, m_2) + h(m_1, m_3)$ for $m_1, m_2, m_3 \in M$,
- 2 $h(m_1, m_2a) = h(m_1, m_2)a$ for $m_1, m_2 \in M$ and $a \in A$,
- $h(m_2, m_1) = h(m_1, m_2)^*$ for $m_1, m_2 \in M$,
- The map $\hat{h}: M \to M^*$ (where M^* is the dual of M) such that $\hat{h}: m \mapsto h(m, \cdot)$, is invertible.

Affine Connections

We define affine connections. Classically, they can be thought of as "connecting" nearby tangent spaces. We shall view them as "differentiation of sections of a bundle w.r.t tangent vector fields".

Let $\mathfrak{g} \subseteq \text{Der}(\mathcal{A})$ and M projective (right) \mathcal{A} -module. A connection $\nabla : \mathfrak{g} \times M \to M$ is such that

$$\ \, {\bf O}_{\partial}(m+n)=\nabla_{\partial}m+\nabla_{\partial}n \ \text{for} \ m,n\in M \ \text{and} \ \partial\in \mathfrak{g},$$

- $\begin{array}{l} \textcircled{O} \quad \nabla_{\lambda\partial_1+\partial_2}m=\lambda\nabla_{\partial_1}m+\nabla_{\partial_2}m \text{ for all } m\in M, \ \lambda\in\mathbb{R} \text{ and } \\ \partial_1,\partial_2\in\mathfrak{g}, \end{array}$

The Levi-Civita connection (classical case)

The classical case:

A connection ∇ : Vect(Σ) × Vect(Σ) \rightarrow Vect(Σ) is compatible with the metric g if

 $X(g(Y,Z)) = g(\nabla_X Y,Z) + g(Y,\nabla_X Z), \quad X, Y, Z \in \text{Vect}(\Sigma),$

and torsion-free if

$$T(X,Y) =
abla_X Y -
abla_Y X - [X,Y] = 0, \quad X,Y \in Vect(\Sigma)$$

Theorem (The fundamental theorem)

Let (Σ, g) be a (pseudo-)Riemannian manifold. Then there exists a unique connection ∇ that is torsion-free and compatible with the metric g.

The connection ∇ is called the Levi-Civita connection.

The noncommutative setting

Can we state a corresponding result to the fundamental theorem for NCG?

Metric compatibility:

$$\partial h(m_1, m_2) = h(\nabla_{\partial^*} m_1, m_2) + h(m_1, \nabla_{\partial} m_2), \quad \partial \in \mathfrak{g} \subseteq \operatorname{Der}(\mathcal{A}),$$

where $\partial^*(a) = (\partial(a^*))^*$ for $a \in \mathcal{A}$.

What about torsion? An expression

$$abla_{m_1}m_2 -
abla_{m_2}m_1 - [m_1, m_2]$$

makes no sense in the noncommutative setting.

The critical piece

We introduce the notion of anchor maps $\varphi : \mathfrak{g} \to M$, satisfying the following conditions:

- ② The module *M* is generated (as an *A*-module) by elements of the form *φ*(*∂*), *∂* ∈ g.

Using φ , it is possible to define torsion:

$$T_{arphi}(\partial_1,\partial_2) =
abla_{\partial_1}arphi(\partial_2) -
abla_{\partial_2}arphi(\partial_1) - arphi([\partial_1,\partial_2]), \quad \partial_1,\partial_2 \in \mathfrak{g}.$$

With this we can talk about Levi-Civita connections in NCG, i.e., connections compatible with the metric h and with vanishing torsion.

Existence and uniqueness of Levi-Civita connections

In general, it is not possible to give a result corresponding to the fundamental theorem of (pseudo-)Riemannian geometry in the noncommutative case.

However, given some further restrictions it is possible to give partial results.

Real calculi, definition

Let A be a unital *-algebra.

Definition (current)

A real calculus $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}_{\pi}, \mathcal{M}, \varphi)$ is a structure such that

1 g is a real Lie algebra, and $\pi : \mathfrak{g} \to \text{Der}(\mathcal{A})$ faithfully maps elements in g to hermitian derivations,

It is a (right)
$$A$$
-module,

 $\mathfrak{O} \varphi : \mathfrak{g} \to M$ is a \mathbb{R} -linear map such that M is generated (as an \mathcal{A} -module) by elements of the form $\varphi(\partial), \ \partial \in \mathfrak{g}$.

Extra restrictions

Definition

 Let C_A = (A, g_π, M, φ) be a real calculus and let h : M × M → A be a metric. The pair (C_A, h) is a real metric calculus if

$$h(\varphi(\partial_1),\varphi(\partial_2))=h(\varphi(\partial_2),\varphi(\partial_1)),\quad \partial_1,\partial_2\in\mathfrak{g}.$$

② If (C_A, h) is a real metric calculus and ∇ : g × M → M is a connection such that

 $h(
abla_{\partial_1} arphi(\partial_2), arphi(\partial_3))^* = h(
abla_{\partial_1} arphi(\partial_2), arphi(\partial_3)), \quad \partial_1, \partial_2, \partial_3 \in \mathfrak{g},$

then (C_A, h, ∇) is a real connection calculus.

S A real metric calculus (C_A, h) is called pseudo-Riemannian if there exists a Levi-Civita connection ∇ such that (C_A, h, ∇) is a real connection calculus

9/43

Uniqueness of the Levi-Civita connection

With these restrictions in place, it is possible to prove a uniqueness result for Levi-Civita connections.

Theorem

If (C_A, h) is a pseudo-Riemannian calculus, then there is at most one Levi-Civita connection ∇ such that (C_A, h, ∇) is a real connection calculus.

Unlike the classical case, the above theorem does not say anything about existence of Levi-Civita connections.

Research questions

There are three main directions that have been considered for real calculi:

- What classical notions can be given meaning in the context of pseudo-Riemannian calculi?
- Are there real metric calculi that are not pseudo-Riemannian?
- When are two real (metric) calculi indistinguishable as algebraic structures?

The noncommutative torus

The noncommutative torus T_{θ}^2 is the *-algebra with unitary generators U, V satisfying the relation VU = qUV, where $q = e^{2\pi i\theta}$. Choose derivations δ_1, δ_2 given by:

$\delta_1(U) = iU$	$\delta_2(U) = 0$
$\delta_1(V) = 0$	$\delta_2(V)=iV.$

We have that $[\delta_1, \delta_2] = 0$.

In analogy with the classical torus T^2 being parallellizable, we let M' be a free module of rank 2, with basis e'_1, e'_2 . With $\varphi'(\delta_i) = e'_i$ (i = 1, 2), the real calculus $C_{T^2_{\theta}} = (T^2_{\theta}, \mathfrak{g}'_{\pi'}, M', \varphi')$ over T^2_{θ} represents the noncommutative torus.

The noncommutative 3-sphere

The noncommutative 3-sphere S^3_{θ} is the unital *-algebra with generators Z, Z^*, W, W^* subject to the relations

 $\begin{aligned} WZ &= qZW & W^*Z = \bar{q}ZW^* & WZ^* = \bar{q}Z^*W \\ W^*Z^* &= qZ^*W^* & Z^*Z = ZZ^* & W^*W = WW^* \\ WW^* &= \mathbb{1} - ZZ^*, \end{aligned}$

Choose derivations $\partial_1, \partial_2, \partial_3$ given by:

$$\begin{aligned} \partial_1(Z) &= iZ, & \partial_2(Z) &= 0, & \partial_3(Z) &= ZWW^* \\ \partial_1(W) &= 0 & \partial_2(W) &= iW & \partial_3(W) &= -WZZ^*. \end{aligned}$$

We have that $[\partial_i, \partial_j] = 0$ for all i, j = 1, 2, 3. In analogy with the 3-sphere S^3 being parallellizable, let M be a free module of rank 3 with basis e_1, e_2, e_3 . Let $\varphi(\partial_i) = e_i$ (i = 1, 2, 3). Then the real calculus $C_{S^3_{\theta}} = (S^3_{\theta}, \mathfrak{g}_{\pi}, M, \varphi)$ over S^3_{θ} represents the noncommutative 3-sphere.

Embeddings

Let $\phi : (\Sigma_1, g_1) \hookrightarrow (\Sigma_2, g_2)$ be an isometric embedding of Σ_1 into Σ_2 . Then ϕ can be viewed as a morphism in (ps-)Rm with extra structure:

- φ is an injective immersion, i.e., its pushforward
 φ_{*} : Vect(Σ₁) → Vect(Σ₂) is everywhere injective.
- **2** Σ_1 is diffeomorphic to $\phi(\Sigma_1) \subset \Sigma_2$.

Let (C_1, h_1) and (C_2, h_2) be real metric calculi corresponding to (Σ_1, g_1) and (Σ_2, g_2) , respectively. To describe the embedding of (C_1, h_1) into (C_2, h_2) we shall define a morphism $(C_2, h_2) \rightarrow (C_1, h_1)$ of real metric calculi.

Riemannian Geometry and Commutative Algebras Noncommutative Riemannian Geometry

Embeddings in NCG Matrix Algebras

Real Calculus Homomorphism, illustration

A schematic picture of $(\phi, \psi, \hat{\psi}) : C_A \to C_{A'}$:

Compatibility conditions 1. $\delta(\phi(a)) = \phi(\psi(\delta)(a))$ 2. $\hat{\psi}(\mathbf{m} \cdot \mathbf{a}) = \hat{\psi}(\mathbf{m}) \cdot \phi(\mathbf{a})$ 3. $\hat{\psi}(\varphi(\psi(\delta))) = \varphi'(\delta)$

Extra compatibility condition for real metric calculus morphisms $(\phi, \psi, \hat{\psi}) : (C_A, h) \rightarrow (C_{A'}, h')$ $h'(\varphi'(\partial'_1), \varphi'(\partial'_2)) = \phi(h(\Psi(\partial'_1), \Psi(\partial'_2))).$

Riemannian Geometry and Commutative Algebras Noncommutative Riemannian Geometry

Embeddings in NCG Matrix Algebras

Embeddings of Real Calculi

Definition

A real calculus homomorphism $(\phi, \psi, \hat{\psi}) : C_{\mathcal{A}} \to C_{\mathcal{A}'}$ is called an embedding of $C_{A'}$ into C_A if ϕ is surjective and there is a submodule \tilde{M} of M such that $M = M_{\Psi} \oplus \tilde{M}$. Moreover, if (C_A, h) and $(C_{A'}, h')$ are real metric calculi such that $h'(\hat{\psi}(m_1),\hat{\psi}(m_2)) = \phi(h(m_1,m_2))$ for all $m_1, m_2 \in M_{\Psi}$ and $M = M_{\Psi} \oplus M_{\Psi}^{\perp}$ (w.r.t h), then we say that $(C_{A'}, h')$ is isometrically embedded into (C_A, h) by $(\phi, \psi, \hat{\psi})$, and h' is called the induced metric.

Orthogonal decomposition of ∇

Let $(C_{\mathcal{A}}, h)$ and $(C_{\mathcal{A}'}, h')$ be pseudo-Riemannian calculi (with Levi-Civita connections ∇ and ∇' , resp.) such that $(\phi, \psi, \hat{\psi}) : C_{\mathcal{A}} \to C_{\mathcal{A}'}$ is an isometric embedding of $(C_{\mathcal{A}'}, h')$ into $(C_{\mathcal{A}}, h)$.

Let $m \in M_{\Psi}$ and let $\xi \in M_{\Psi}^{\perp}$. One may split ∇ into tangential and normal parts in the following way:

$$abla_{\psi(\delta)}m = L(\delta, m) + \alpha(\delta, m) \quad (Gauss' \text{ formula})$$

 $abla_{\psi(\delta)}\xi = -A_{\xi}(\delta) + D_{\delta}\xi \quad (Weingarten's \text{ formula});$

 $\alpha: \mathfrak{g}' \times M_{\Psi} \to M_{\Psi}^{\perp}$ is called the second fundamental form, and $A: \mathfrak{g}' \times M_{\Psi}^{\perp} \to M_{\Psi}$ is called the Weingarten map.

Free real calculi

Let $C_A = (A, g_\pi, M, \varphi)$ be a real calculus where \mathfrak{g} has basis $\partial_1, ..., \partial_n$, which is such that

• $M \simeq \mathcal{A}^n$ is free,

2 the set $\varphi(\partial_1), ..., \varphi(\partial_n)$ forms a basis of M.

Then C_A is called a free real calculus.

- If (C_A, h) is a free real metric calculus, then it is also pseudo-Riemannian. Conceptually, a free real metric calculus can be thought of as a parallellizable manifold.
- $C_{T_a^2}$ and $C_{S_a^3}$ given earlier are both free.
- Mean curvature can be defined for embeddings of free real metric calculi in a straightforward manner.

Mean curvature and minimality of an embedding

Definition

Let $(C_{\mathcal{A}}, h)$ and $(C_{\mathcal{A}'}, h')$ be pseudo-Riemannian real calculi such that $(C_{\mathcal{A}'}, h')$ is free, and let $(\phi, \psi, \hat{\psi}) : C_{\mathcal{A}} \to C_{\mathcal{A}'}$ be an isometric embedding of $(C_{\mathcal{A}'}, h')$ into $(C_{\mathcal{A}}, h)$.

For a basis $\delta_1, ..., \delta_k$ of \mathfrak{g}' , the mean curvature $H_{\mathcal{A}'} : M \to \mathcal{A}'$ is:

 $H_{\mathcal{A}'}(m) = \phi(h(m, \alpha(\delta_j, \Psi(\delta_j))))(h')^{ij}, \quad m \in M.$

- The value of $H_{\mathcal{A}'}(m)$ is independent of the choice of basis $\delta_1, ..., \delta_k$ for all $m \in M$,
- $H_{\mathcal{A}'}(m) = 0$ for all $m \in M_{\Psi}$,
- We say that an embedding is minimal if the mean curvature is zero, i.e. H_{A'}(m) = 0 for all m ∈ M.

The noncommutative torus again

The noncommutative torus T_{θ}^2 is the *-algebra with unitary generators U, V satisfying the relation VU = qUV, where $q = e^{2\pi i\theta}$.

Choose derivations δ_1, δ_2 given by:

$$\begin{split} \delta_1(U) &= iU & \delta_2(U) = 0 \\ \delta_1(V) &= 0 & \delta_2(V) = iV. \end{split}$$

We have that $[\delta_1, \delta_2] = 0$.

In analogy with the classical torus T^2 being parallellizable, we let M' be a free module of rank 2, with basis e'_1, e'_2 . With $\varphi'(\delta_i) = e'_i$ (i = 1, 2), the real calculus $C_{T^2_{\theta}} = (T^2_{\theta}, \mathfrak{g}'_{\pi'}, M', \varphi')$ over T^2_{θ} represents the noncommutative torus.

The noncommutative 3-sphere again

The noncommutative 3-sphere S^3_{θ} is the unital *-algebra with generators Z, Z^*, W, W^* subject to the relations

 $\begin{aligned} WZ &= qZW & W^*Z = \bar{q}ZW^* & WZ^* = \bar{q}Z^*W \\ W^*Z^* &= qZ^*W^* & Z^*Z = ZZ^* & W^*W = WW^* \\ WW^* &= \mathbb{1} - ZZ^*, \end{aligned}$

Choose derivations $\partial_1, \partial_2, \partial_3$ given by:

$$\begin{aligned} \partial_1(Z) &= iZ, & \partial_2(Z) &= 0, & \partial_3(Z) &= ZWW^* \\ \partial_1(W) &= 0 & \partial_2(W) &= iW & \partial_3(W) &= -WZZ^*. \end{aligned}$$

We have that $[\partial_i, \partial_j] = 0$ for all i, j = 1, 2, 3. In analogy with the 3-sphere S^3 being parallellizable, let M be a free module of rank 3 with basis e_1, e_2, e_3 . Let $\varphi(\partial_i) = e_i$ (i = 1, 2, 3). Then the real calculus $C_{S^3_{\theta}} = (S^3_{\theta}, \mathfrak{g}_{\pi}, M, \varphi)$ over S^3_{θ} represents the noncommutative 3-sphere.

A minimal embedding of T_{θ}^2 into S_{θ}^3

An embedding of T_{θ}^2 into S_{θ}^3 is achieved by the *-homomorphism $\phi: S_{\theta}^3 \to T_{\theta}^2$ given by $\phi(Z) = \lambda U$ and $\phi(W) = \mu W$, where λ and μ are nonzero complex constants such that $|\lambda|^2 + |\mu|^2 = 1$.

With this choice of ϕ , we have ψ given by $\psi(\delta_i) = \partial_i$ and $\hat{\psi}$ is then given by $\hat{\psi}(e_i) = e'_i$ for i = 1, 2, and we have that $(\phi, \psi, \hat{\psi}) : C_{S^3_{\theta}} \to C_{T^2_{\theta}}$ is an embedding of the noncommutative torus into the noncommutative 3-sphere.

Proposition

Let *h* be the standard metric on the noncommutative 3-sphere, i.e., $h(e_1, e_1) = ZZ^*$, $h(e_2, e_2) = WW^*$, $h(e_3, e_3) = ZZ^*WW^*$, and $h(e_i, e_j) = 0$ if $i \neq j$, and let *h'* be the induced metric on the noncommutative torus. Then the above embedding is minimal if $|\lambda| = |\mu| = 1/\sqrt{2}$.

Free and Projective Real Calculi

A real calculus $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}_{\pi}, M, \varphi)$ is called projective if M is projective.

- By the Serre-Swan theorem, projective real calculi are especially interesting to study.
- Every free real calculus is projective.
- If M is free, this does not necessarily imply that C_A is free.

Given a free real calculus $\tilde{C}_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}_{\pi}, \mathcal{A}^n, \tilde{\varphi})$ and a projection $P : \mathcal{A}^n \to \mathcal{A}^n$, then the real calculus $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}_{\pi}, P(\mathcal{A}^n), P \circ \tilde{\varphi})$ can be seen as a "projection" of $\tilde{C}_{\mathcal{A}}$.

Riemannian Geometry and Commutative Algebras Noncommutative Riemannian Geometry Embeddings in NCG Matrix Algebras

Free and Projective Real Calculi, continued

Proposition

Let $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}_{\pi}, M, \varphi)$ be a projective real calculus. Then there exists a free real calculus $\tilde{C}_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}_{\pi}, \mathcal{A}^n, \tilde{\varphi})$ and a projection $P: \mathcal{A}^n \to \mathcal{A}^n$ such that $C_{\mathcal{A}}$ is isomorphic to $(\mathcal{A}, \mathfrak{g}_{\pi}, P(\mathcal{A}^n), P \circ \tilde{\varphi})$.

The above proposition can be used to find objects on projective real calculi by defining them on a free real calculus and then project them down.

Free vs. Projective Real Calculi

In a sense, free real calculi are very easy to work with.

- If (C_A, h) is a free real metric calculus it is automatically pseudo-Riemannian as well.
- If the real calculi $(\mathcal{A}, \mathfrak{g}_{\pi}, M, \varphi)$ and $(\mathcal{A}, \mathfrak{g}_{\pi}, M, \varphi')$ are free, then they are isomorphic.

For general projective real calculi the situation is far more interesting (and difficult).

Real Calculi over Matrix Algebras

Let $\mathcal{A} = \operatorname{Mat}_{N}(\mathbb{C})$ for some N. We consider the module $M = \mathbb{C}^{N}$, which is projective and simple. All derivations on \mathcal{A} are inner, and hermitian derivations correspond to unique elements of $\mathfrak{su}(N)$ of anti-hermitian traceless matrices. Therefore, let

• $\mathfrak{g} \subseteq \mathfrak{su}(N)$, with basis $D_1, ..., D_n$.

• $\pi : \mathfrak{g} \to \mathsf{Der}(\mathcal{A})$, given by $\pi(D_i) = \partial_i = [D_i, \cdot]$.

Note that since \mathbb{C}^N is simple, any nonzero \mathbb{R} -linear map $\varphi: \mathfrak{g} \to \mathbb{C}^N$ is an anchor map.

The case $\mathfrak{g} = \mathbb{R}\langle D \rangle \subset \mathfrak{su}(N)$

Let $\mathfrak{g} = \mathbb{R}\langle D \rangle \subset \mathfrak{su}(N)$, the 1-dimensional Lie algebra generated by D, and let $C_{\mathcal{A}} = (\operatorname{Mat}_{N}(\mathbb{C}), \mathfrak{g}_{\pi}, \mathbb{C}^{N}, \varphi)$ be a real calculus. If D is fixed, then it is possible to calculate the exact number of nonisomorphic real calculi of the form $(\operatorname{Mat}_{N}(\mathbb{C}), \mathfrak{g}_{\pi}, \mathbb{C}^{N}, \varphi)$, where φ is arbitrary.

Proposition

Let k be the number of distinct eigenvalues of D and let $|C_D|$ denote the number of pairwise nonisomorphic real calculi of the form $(Mat_N(\mathbb{C}), \mathfrak{g}_{\pi}, \mathbb{C}^N, \varphi)$. Then

• if D is not anti-selfsimilar, then $|C_D| = 2^k - 1$,

if D is anti-selfsimilar and k is odd, then
$$|C_D| = 2^{(k-1)/2}(1 + 2^{(k-1)/2}) - 1$$
,

• if D is anti-selfsimilar and k is even, then $|C_D| = 2^{k/2-1}(1+2^{k/2}) - 1.$

Metric Anchor Maps for the Matrix Example

With $\mathcal{A} = Mat_N(\mathbb{C})$ and $M = \mathbb{C}^N$, all metrics $h : M \times M \to \mathcal{A}$ are of the form

$$h(u,v) = x \cdot u^{\dagger}v, \quad u,v \in \mathbb{C}^N, \quad x \in \mathbb{R} \setminus \{0\},$$

where \dagger denotes the hermitian transpose. Moreover, the matrix $u^{\dagger}v$ is self-adjoint if and only if $u = \mu \cdot v$ for some $\mu \in \mathbb{R}$.

Let $D_1, ... D_n$ be a basis of \mathfrak{g} and let $\varphi : \mathfrak{g} \to \mathbb{C}^N$ be a metric anchor map. Since this implies that

$$h(\varphi(D_i),\varphi(D_j)) = h(\varphi(D_i),\varphi(D_j))^{\dagger} = x \cdot \varphi(D_i)^{\dagger} \varphi(D_j),$$

which implies that there is a unit vector $\hat{v}_0 \in \mathbb{C}^N$ and $\mu_1, ..., \mu_n \in \mathbb{R}$ such that

$$\varphi(D_i)=\mu_i\hat{v}_0.$$

Connections for the Matrix Example

To characterize a generic connection ∇ on $\mathfrak{g} \times M$, we note that $\nabla_i = \nabla_{\partial_i}$ is a linear map for each *i*. Hence,

$$abla_i v = v \cdot X_i, \quad v \in \mathbb{C}^N$$

for a unique matrix X_i . The Leibniz condition for ∇ implies that

$$\begin{aligned} (v \cdot A) \cdot X_i &= \nabla_i (v \cdot A) = (\nabla_i v) \cdot A + v \cdot \partial_i (A) \\ &= v \cdot (X_i A) + v \cdot [D_i, A], \quad v \in \mathbb{C}^N, A \in \mathsf{Mat}_N(\mathbb{C}). \end{aligned}$$

This implies that $X_i = t_i \mathbb{1}_N - D_i$ or, equivalently, that

$$\nabla_i \mathbf{v} = t_i \mathbf{v} - \mathbf{v} \cdot D_i,$$

where $t_i \in \mathbb{C}$ are arbitrary complex constants. The connection is compatible with the metric *h* iff $t_j = i\lambda_j$ for $\lambda_j \in \mathbb{R}$, i.e., if X_j is antihermitian.

The case N = 2 and $\mathfrak{g} = \mathfrak{su}(2)$

In the matrix example, let N = 2 and let $\mathfrak{g} = \mathbb{R}\langle D_1, D_2, D_3 \rangle = \mathfrak{su}(2)$, given by

$$D_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad D_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad D_3 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

The maps φ we consider are of the form $\varphi(\partial_i) = \mu_i \hat{v}_0$, where $\hat{v}_0 \in \mathbb{C}^2$ is nonzero and $\mu_1, \mu_2, \mu_3 \in \mathbb{R}$ are not all zero, i.e., φ is a metric anchor map.

With $X_j = t_j \mathbb{1} - D_j$ we have that $\nabla_j v = v \cdot X_i$ defines a metric connection iff each $t_j = i\lambda_j$, $\lambda_j \in \mathbb{R}$, implying that X_i is skew-hermitian.

The matrix example, part 2 (continued)

Letting $f_{jk}^i \in \mathbb{R}$ denote the structure constants of \mathfrak{g} (i.e., $[\partial_i, \partial_j] = f_{ij}^k \partial_k$), we get the torsion T_{φ} to be

$$T_{\varphi}(D_i, D_j) = \nabla_i \varphi_j - \nabla_j \varphi_i - \varphi([\partial_i, \partial_j]) = \hat{v}_0(\mu_j X_i - \mu_i X_j - f_{ij}^k \mu_k \mathbb{1}).$$

This expression vanishes for all i, j iff \hat{v}_0 is an eigenvector of $T_{ij} = \mu_j X_i - \mu_i X_j - f_{ij}^k \mu_k \mathbb{1}$ with eigenvalue $\lambda_{ij} = 0$. Noting that $\Re(\lambda_{ij}) = -f_{ij}^k \mu_k$, it follows that $-f_{ij}^k \mu_k = 0$. However, solving these equations for all i, j, we get

$$\Re(\lambda_{12}) = 2\mu_3 = 0, \quad \Re(\lambda_{13}) = -2\mu_2 = 0, \quad \Re(\lambda_{23}) = 2\mu_1 = 0.$$

This implies that $\varphi \equiv 0$, which is not an anchor map. We have thus proven that if $((Mat_2(\mathbb{C}), \mathfrak{su}(2)_{\pi}, \mathbb{C}^2, \varphi), h)$ is a real metric calculus, then it is not pseudo-Riemannian.

The general statement for $\mathcal{A} = \mathsf{Mat}_{N}(\mathbb{C})$ and $M = \mathbb{C}^{N}$

The general statement for $\mathcal{A} = Mat_{\mathcal{N}}(\mathbb{C})$ and $\mathcal{M} = \mathbb{C}^{\mathcal{N}}$ is as follows.

Theorem

There exists a metric anchor map $\varphi : \mathfrak{g} \to \mathbb{C}^N$ such that the resulting real metric calculus ((Mat_N(\mathbb{C}), \mathfrak{g}_{π} , \mathbb{C}^{N} , φ), h) is pseudo-Riemannian if and only if $\mathfrak{g} \subseteq \mathfrak{su}(N)$ is not semisimple and there exists a common eigenvector to all matrices in g.

Riemannian Geometry and Commutative Algebras Noncommutative Riemannian Geometry Embeddings in NCG Matrix Algebras

The End