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(pseudo-)Riemannian Geometry

(Σ, g) − (pseudo-)Riemannian manifold.

Σ − Smooth manifold. Locally ”indistinguishable” from Rn.

g − (pseudo-)Riemannian metric. Gives the manifold
geometric structure.

At each point p ∈ Σ: Tangent space at p = TpΣ, basically a copy
of Rn attached to p.

The tangent bundle TΣ =
⋃

p∈Σ TpΣ, disjoint union. Vect(Σ)
denotes the module of smooth sections of TΣ.

Fundamental fact: if A = C∞(Σ), then Der(A) ≃ Vect(Σ).
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The Category (ps-)Rm

Let (ps-)Rm denote ”the” category of (pseudo-)Riemannian
manifolds.

Objects: (pseudo-)Riemannian manifolds (Σ, g).

Morphisms: ϕ : (Σ1, g1) → (Σ2, g2), ϕ is a smooth map from
Σ1 to Σ2 such that the metric is preserved, i.e.,

ϕ∗g2 = g1 ⇐⇒ g2(ϕ∗(X ), ϕ∗(Y )) = g1(X ,Y ), X ,Y ∈ Vect(Σ1).
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From Geometric Spaces to Algebras

We note that a morphism ϕ : (Σ1, g1) → (Σ2, g2) induces an
algebra homomorphism ϕ̂ : C∞(Σ2) → C∞(Σ1) by

ϕ̂(f )(p) = f (ϕ(p)), p ∈ Σ1.

Visually:
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Two Central Theorems

Theorem (Gelfand)

Let A be a commutative C ∗-algebra. Then there is a locally
compact Hausdorff space X such that A = C0(X ).

Theorem (Swan)

Let X be a compact Hausdorff space. Then the category of finitely
generated projective modules over the C ∗-algebra C (X ) of
continuous functions on X is equivalent to the category of
finite-rank vector bundles on X , where the equivalence is
established by sending a vector bundle E to the module of
continuous sections of E .

The above theorems give a strong connection between
commutative C ∗-algebras and geometry, and provide an important
conceptual motivation behind NCG.
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Riemannian Geometry over Commutative Algebras

Let A be a commutative ∗-algebra. Conceptually, we think of it as
C∞(X ) for some unknown, smooth manifold X .

Q: How to do ”(pseudo-)Riemannian geometry” on A?

(possible) A: Use Der(A)!

Using the natural equivalence between derivations and smooth
sections of the tangent bundle, one defines the metric as a
symmetric, bilinear map g : Der(A)× Der(A) → A that is
nondegenerate.
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The central question

What happens if A is a noncommutative ∗-algebra? Can we build
a theory of noncommutative geometry in a spirit similar what was
done in the commutative case?
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An immediate challenge

A commutative ⇒ Der(A) has a module structure.

A noncommutative ⇒ Der(A) does NOT have a module
structure!

Another important difference: if A is commutative, then every
nontrivial derivation ∂ is outer, i.e., it cannot be written on the
form ∂(a) = xa− ax for some x ∈ A. If A is noncommutative,
then Der(A) contains a nontrivial inner derivation for each element
that is not central.

How to deal with this?
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A Straightforward Approach

From the Serre-Swan theorem: Consider finitely generated
projective (right) A-modules as ”noncommutative vector bundles”.

As for derivations: Choose the derivations of interest, and consider
only those.
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Metrics

In order to do ”geometry” for a noncommutative space, a metric is
essential. From the Serre-Swan theorem: define the metric as
h : M ×M → A for some (right) A-module M.

Classically (when A is commutative): h(m1,m2) = h(m2,m1) for
all m1,m2 ∈ M. In general, this condition is not feasible to include
if A is noncommutative.
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Metrics, continued

A metric h : M ×M → A is an invertible hermitian form, i.e.,

1 h(m1,m2 +m3) = h(m1,m2) + h(m1,m3) for
m1,m2,m3 ∈ M,

2 h(m1,m2a) = h(m1,m2)a for m1,m2 ∈ M and a ∈ A,

3 h(m2,m1) = h(m1,m2)
∗ for m1,m2 ∈ M,

4 The map ĥ : M → M∗ (where M∗ is the dual of M) such that
ĥ : m 7→ h(m, ·), is invertible.
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Affine Connections

We define affine connections. Classically, they can be thought of
as ”connecting” nearby tangent spaces. We shall view them as
”differentiation of sections of a bundle w.r.t tangent vector fields”.

Let g ⊆ Der(A) and M projective (right) A-module. A connection
∇ : g×M → M is such that

1 ∇∂(m + n) = ∇∂m +∇∂n for m, n ∈ M and ∂ ∈ g,

2 ∇λ∂1+∂2m = λ∇∂1m +∇∂2m for all m ∈ M, λ ∈ R and
∂1, ∂2 ∈ g,

3 ∇∂(m ·a) = (∇∂m) ·a+m ·∂(a) for m ∈ M, ∂ ∈ g and a ∈ A.
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The Levi-Civita connection (classical case)

The classical case:
A connection ∇ : Vect(Σ)× Vect(Σ) → Vect(Σ) is compatible
with the metric g if

X (g(Y ,Z )) = g(∇XY ,Z ) + g(Y ,∇XZ ), X ,Y ,Z ∈ Vect(Σ),

and torsion-free if

T (X ,Y ) = ∇XY −∇YX − [X ,Y ] = 0, X ,Y ∈ Vect(Σ)

Theorem (The fundamental theorem)

Let (Σ, g) be a (pseudo-)Riemannian manifold. Then there exists
a unique connection ∇ that is torsion-free and compatible with the
metric g .

The connection ∇ is called the Levi-Civita connection.
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The noncommutative setting

Can we state a corresponding result to the fundamental theorem
for NCG?

Metric compatibility:

∂h(m1,m2) = h(∇∂∗m1,m2) + h(m1,∇∂m2), ∂ ∈ g ⊆ Der(A),

where ∂∗(a) = (∂(a∗))∗ for a ∈ A.

What about torsion? An expression

∇m1m2 −∇m2m1 − [m1,m2]

makes no sense in the noncommutative setting.
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The critical piece

We introduce the notion of anchor maps φ : g → M, satisfying the
following conditions:

1 φ is linear.

2 The module M is generated (as an A-module) by elements of
the form φ(∂), ∂ ∈ g.

Using φ, it is possible to define torsion:

Tφ(∂1, ∂2) = ∇∂1φ(∂2)−∇∂2φ(∂1)− φ([∂1, ∂2]), ∂1, ∂2 ∈ g.

With this we can talk about Levi-Civita connections in NCG, i.e.,
connections compatible with the metric h and with vanishing
torsion.
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Existence and uniqueness of Levi-Civita connections

In general, it is not possible to give a result corresponding to the
fundamental theorem of (pseudo-)Riemannian geometry in the
noncommutative case.

However, given some further restrictions it is possible to give
partial results.
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Real calculi, definition

Let A be a unital ∗-algebra.

Definition (current)

A real calculus CA = (A, gπ,M, φ) is a structure such that

1 g is a real Lie algebra, and π : g → Der(A) faithfully maps
elements in g to hermitian derivations,

2 M is a (right) A-module,

3 φ : g → M is a R-linear map such that M is generated (as an
A-module) by elements of the form φ(∂), ∂ ∈ g.

18 / 43



Riemannian Geometry and Commutative Algebras Noncommutative Riemannian Geometry Embeddings in NCG Matrix Algebras

Extra restrictions

Definition

1 Let CA = (A, gπ,M, φ) be a real calculus and let
h : M ×M → A be a metric. The pair (CA, h) is a real metric
calculus if

h(φ(∂1), φ(∂2)) = h(φ(∂2), φ(∂1)), ∂1, ∂2 ∈ g.

2 If (CA, h) is a real metric calculus and ∇ : g×M → M is a
connection such that

h(∇∂1φ(∂2), φ(∂3))
∗ = h(∇∂1φ(∂2), φ(∂3)), ∂1, ∂2, ∂3 ∈ g,

then (CA, h,∇) is a real connection calculus.

3 A real metric calculus (CA, h) is called pseudo-Riemannian if
there exists a Levi-Civita connection ∇ such that (CA, h,∇) is
a real connection calculus. 19 / 43
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Uniqueness of the Levi-Civita connection

With these restrictions in place, it is possible to prove a uniqueness
result for Levi-Civita connections.

Theorem

If (CA, h) is a pseudo-Riemannian calculus, then there is at most
one Levi-Civita connection ∇ such that (CA, h,∇) is a real
connection calculus.

Unlike the classical case, the above theorem does not say anything
about existence of Levi-Civita connections.
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Research questions

There are three main directions that have been considered for real
calculi:

1 What classical notions can be given meaning in the context of
pseudo-Riemannian calculi?

2 Are there real metric calculi that are not pseudo-Riemannian?

3 When are two real (metric) calculi indistinguishable as
algebraic structures?
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The noncommutative torus

The noncommutative torus T 2
θ is the ∗-algebra with unitary

generators U,V satisfying the relation VU = qUV , where
q = e2πiθ. Choose derivations δ1, δ2 given by:

δ1(U) = iU δ2(U) = 0

δ1(V ) = 0 δ2(V ) = iV .

We have that [δ1, δ2] = 0.

In analogy with the classical torus T 2 being parallellizable, we let
M ′ be a free module of rank 2, with basis e ′1, e

′
2. With φ′(δi ) = e ′i

(i = 1, 2), the real calculus CT 2
θ
= (T 2

θ , g
′
π′ ,M ′, φ′) over T 2

θ

represents the noncommutative torus.
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The noncommutative 3-sphere

The noncommutative 3-sphere S3
θ is the unital ∗-algebra with

generators Z ,Z ∗,W ,W ∗ subject to the relations

WZ = qZW W ∗Z = q̄ZW ∗ WZ ∗ = q̄Z ∗W

W ∗Z ∗ = qZ ∗W ∗ Z ∗Z = ZZ ∗ W ∗W = WW ∗

WW ∗ = 1− ZZ ∗,

Choose derivations ∂1, ∂2, ∂3 given by:

∂1(Z ) = iZ , ∂2(Z ) = 0, ∂3(Z ) = ZWW ∗

∂1(W ) = 0 ∂2(W ) = iW ∂3(W ) = −WZZ ∗.

We have that [∂i , ∂j ] = 0 for all i , j = 1, 2, 3. In analogy with the
3-sphere S3 being parallellizable, let M be a free module of rank 3
with basis e1, e2, e3. Let φ(∂i ) = ei (i = 1, 2, 3). Then the real
calculus CS3

θ
= (S3

θ , gπ,M, φ) over S3
θ represents the

noncommutative 3-sphere.
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Embeddings

Let ϕ : (Σ1, g1) ↪→ (Σ2, g2) be an isometric embedding of Σ1 into
Σ2. Then ϕ can be viewed as a morphism in (ps-)Rm with extra
structure:

1 ϕ is an injective immersion, i.e., its pushforward
ϕ∗ : Vect(Σ1) → Vect(Σ2) is everywhere injective.

2 Σ1 is diffeomorphic to ϕ(Σ1) ⊂ Σ2.

Let (C1, h1) and (C2, h2) be real metric calculi corresponding to
(Σ1, g1) and (Σ2, g2), respectively. To describe the embedding of
(C1, h1) into (C2, h2) we shall define a morphism
(C2, h2) → (C1, h1) of real metric calculi.
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Real Calculus Homomorphism, illustration

A schematic picture of (ϕ, ψ, ψ̂) : CA → CA′ :

CA CA′

A

g

ψ(g′)

M

MΨ

A′

g′

M ′

ϕ

ψ

ψ̂

Ψ
φ φ′

Compatibility conditions

1.

2.

3.

δ(ϕ(a)) = ϕ(ψ(δ)(a))

ψ̂(m · a) = ψ̂(m) · ϕ(a)

ψ̂(φ(ψ(δ))) = φ′(δ)

Extra compatibility condition for real metric calculus morphisms
(ϕ, ψ, ψ̂) : (CA, h) → (CA′ , h′)

h′(φ′(∂′1), φ
′(∂′2)) = ϕ(h(Ψ(∂′1),Ψ(∂′2))).
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Embeddings of Real Calculi

Definition

A real calculus homomorphism (ϕ, ψ, ψ̂) : CA → CA′ is called an
embedding of CA′ into CA if ϕ is surjective and there is a
submodule M̃ of M such that M = MΨ ⊕ M̃. Moreover, if (CA, h)
and (CA′ , h′) are real metric calculi such that
h′(ψ̂(m1), ψ̂(m2)) = ϕ(h(m1,m2)) for all m1,m2 ∈ MΨ and
M = MΨ ⊕M⊥

Ψ (w.r.t h), then we say that (CA′ , h′) is

isometrically embedded into (CA, h) by (ϕ, ψ, ψ̂), and h′ is called
the induced metric.
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Orthogonal decomposition of ∇

Let (CA, h) and (CA′ , h′) be pseudo-Riemannian calculi (with
Levi-Civita connections ∇ and ∇′, resp.) such that
(ϕ, ψ, ψ̂) : CA → CA′ is an isometric embedding of (CA′ , h′) into
(CA, h).

Let m ∈ MΨ and let ξ ∈ M⊥
Ψ . One may split ∇ into tangential and

normal parts in the following way:

∇ψ(δ)m = L(δ,m) + α(δ,m) (Gauss’ formula)

∇ψ(δ)ξ = −Aξ(δ) + Dδξ (Weingarten’s formula);

α : g′ ×MΨ → M⊥
Ψ is called the second fundamental form, and

A : g′ ×M⊥
Ψ → MΨ is called the Weingarten map.
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Free real calculi

Let CA = (A, gπ,M, φ) be a real calculus where g has basis
∂1, ..., ∂n, which is such that

1 M ≃ An is free,

2 the set φ(∂1), ..., φ(∂n) forms a basis of M.

Then CA is called a free real calculus.

If (CA, h) is a free real metric calculus, then it is also
pseudo-Riemannian. Conceptually, a free real metric calculus
can be thought of as a parallellizable manifold.

CT 2
θ
and CS3

θ
given earlier are both free.

Mean curvature can be defined for embeddings of free real
metric calculi in a straightforward manner.
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Mean curvature and minimality of an embedding

Definition

Let (CA, h) and (CA′ , h′) be pseudo-Riemannian real calculi such
that (CA′ , h′) is free, and let (ϕ, ψ, ψ̂) : CA → CA′ be an isometric
embedding of (CA′ , h′) into (CA, h).

For a basis δ1, ..., δk of g′, the mean curvature HA′ : M → A′ is:

HA′(m) = ϕ(h(m, α(δj ,Ψ(δj))))(h
′)ij , m ∈ M.

The value of HA′(m) is independent of the choice of basis
δ1, ..., δk for all m ∈ M,

HA′(m) = 0 for all m ∈ MΨ,

We say that an embedding is minimal if the mean curvature is
zero, i.e. HA′(m) = 0 for all m ∈ M.
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The noncommutative torus again

The noncommutative torus T 2
θ is the ∗-algebra with unitary

generators U,V satisfying the relation VU = qUV , where
q = e2πiθ.
Choose derivations δ1, δ2 given by:

δ1(U) = iU δ2(U) = 0

δ1(V ) = 0 δ2(V ) = iV .

We have that [δ1, δ2] = 0.

In analogy with the classical torus T 2 being parallellizable, we let
M ′ be a free module of rank 2, with basis e ′1, e

′
2. With φ′(δi ) = e ′i

(i = 1, 2), the real calculus CT 2
θ
= (T 2

θ , g
′
π′ ,M ′, φ′) over T 2

θ

represents the noncommutative torus.
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The noncommutative 3-sphere again

The noncommutative 3-sphere S3
θ is the unital ∗-algebra with

generators Z ,Z ∗,W ,W ∗ subject to the relations

WZ = qZW W ∗Z = q̄ZW ∗ WZ ∗ = q̄Z ∗W

W ∗Z ∗ = qZ ∗W ∗ Z ∗Z = ZZ ∗ W ∗W = WW ∗

WW ∗ = 1− ZZ ∗,

Choose derivations ∂1, ∂2, ∂3 given by:

∂1(Z ) = iZ , ∂2(Z ) = 0, ∂3(Z ) = ZWW ∗

∂1(W ) = 0 ∂2(W ) = iW ∂3(W ) = −WZZ ∗.

We have that [∂i , ∂j ] = 0 for all i , j = 1, 2, 3. In analogy with the
3-sphere S3 being parallellizable, let M be a free module of rank 3
with basis e1, e2, e3. Let φ(∂i ) = ei (i = 1, 2, 3). Then the real
calculus CS3

θ
= (S3

θ , gπ,M, φ) over S3
θ represents the

noncommutative 3-sphere.
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A minimal embedding of T 2
θ into S3

θ

An embedding of T 2
θ into S3

θ is achieved by the ∗-homomorphism
ϕ : S3

θ → T 2
θ given by ϕ(Z ) = λU and ϕ(W ) = µW , where λ and

µ are nonzero complex constants such that |λ|2 + |µ|2 = 1.

With this choice of ϕ, we have ψ given by ψ(δi ) = ∂i and ψ̂ is
then given by ψ̂(ei ) = e ′i for i = 1, 2, and we have that

(ϕ, ψ, ψ̂) : CS3
θ
→ CT 2

θ
is an embedding of the noncommutative

torus into the noncommutative 3-sphere.

Proposition

Let h be the standard metric on the noncommutative 3-sphere,
i.e., h(e1, e1) = ZZ ∗, h(e2, e2) = WW ∗, h(e3, e3) = ZZ ∗WW ∗, and
h(ei , ej) = 0 if i ̸= j , and let h′ be the induced metric on the
noncommutative torus. Then the above embedding is minimal if
|λ| = |µ| = 1/

√
2.
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Free and Projective Real Calculi

A real calculus CA = (A, gπ,M, φ) is called projective if M is
projective.

By the Serre-Swan theorem, projective real calculi are
especially interesting to study.

Every free real calculus is projective.

If M is free, this does not necessarily imply that CA is free.

Given a free real calculus C̃A = (A, gπ,An, φ̃) and a projection
P : An → An, then the real calculus CA = (A, gπ,P(An),P ◦ φ̃)
can be seen as a ”projection” of C̃A.
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Free and Projective Real Calculi, continued

Proposition

Let CA = (A, gπ,M, φ) be a projective real calculus. Then there
exists a free real calculus C̃A = (A, gπ,An, φ̃) and a projection
P : An → An such that CA is isomorphic to (A, gπ,P(An),P ◦ φ̃).

The above proposition can be used to find objects on projective
real calculi by defining them on a free real calculus and then
project them down.
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Free vs. Projective Real Calculi

In a sense, free real calculi are very easy to work with.

If (CA, h) is a free real metric calculus it is automatically
pseudo-Riemannian as well.

If the real calculi (A, gπ,M, φ) and (A, gπ,M, φ′) are free,
then they are isomorphic.

For general projective real calculi the situation is far more
interesting (and difficult).
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Real Calculi over Matrix Algebras

Let A = MatN(C) for some N. We consider the module M = CN ,
which is projective and simple. All derivations on A are inner, and
hermitian derivations correspond to unique elements of su(N) of
anti-hermitian traceless matrices. Therefore, let

g ⊆ su(N), with basis D1, ...,Dn.

π : g → Der(A), given by π(Di ) = ∂i = [Di , ·].
Note that since CN is simple, any nonzero R-linear map
φ : g → CN is an anchor map.
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The case g = R⟨D⟩ ⊂ su(N)

Let g = R⟨D⟩ ⊂ su(N), the 1-dimensional Lie algebra generated by
D, and let CA = (MatN(C), gπ,CN , φ) be a real calculus. If D is
fixed, then it is possible to calculate the exact number of
nonisomorphic real calculi of the form (MatN(C), gπ,CN , φ),
where φ is arbitrary.

Proposition

Let k be the number of distinct eigenvalues of D and let |CD |
denote the number of pairwise nonisomorphic real calculi of the
form (MatN(C), gπ,CN , φ). Then

1 if D is not anti-selfsimilar, then |CD | = 2k − 1,

2 if D is anti-selfsimilar and k is odd, then
|CD | = 2(k−1)/2(1 + 2(k−1)/2)− 1,

3 if D is anti-selfsimilar and k is even, then
|CD | = 2k/2−1(1 + 2k/2)− 1.
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Metric Anchor Maps for the Matrix Example

With A = MatN(C) and M = CN , all metrics h : M ×M → A are
of the form

h(u, v) = x · u†v , u, v ∈ CN , x ∈ R \ {0},

where † denotes the hermitian transpose. Moreover, the matrix
u†v is self-adjoint if and only if u = µ · v for some µ ∈ R.

Let D1, ...Dn be a basis of g and let φ : g → CN be a metric
anchor map. Since this implies that

h(φ(Di ), φ(Dj)) = h(φ(Di ), φ(Dj))
† = x · φ(Di )

†φ(Dj),

which implies that there is a unit vector v̂0 ∈ CN and
µ1, ..., µn ∈ R such that

φ(Di ) = µi v̂0.
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Connections for the Matrix Example

To characterize a generic connection ∇ on g×M, we note that
∇i = ∇∂i is a linear map for each i . Hence,

∇iv = v · Xi , v ∈ CN

for a unique matrix Xi . The Leibniz condition for ∇ implies that

(v · A) · Xi = ∇i (v · A) = (∇iv) · A+ v · ∂i (A)
= v · (XiA) + v · [Di ,A], v ∈ CN ,A ∈ MatN(C).

This implies that Xi = ti1N − Di or, equivalently, that

∇iv = tiv − v · Di ,

where ti ∈ C are arbitrary complex constants. The connection is
compatible with the metric h iff tj = iλj for λj ∈ R, i.e., if Xj is
antihermitian.
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The case N = 2 and g = su(2)

In the matrix example, let N = 2 and let
g = R⟨D1,D2,D3⟩ = su(2), given by

D1 =

(
0 i
i 0

)
, D2 =

(
0 1
−1 0

)
, D3 =

(
i 0
0 −i

)
.

The maps φ we consider are of the form φ(∂i ) = µi v̂0, where
v̂0 ∈ C2 is nonzero and µ1, µ2, µ3 ∈ R are not all zero, i.e., φ is a
metric anchor map.

With Xj = tj1− Dj we have that ∇jv = v · Xi defines a metric
connection iff each tj = iλj , λj ∈ R, implying that Xi is
skew-hermitian.
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The matrix example, part 2 (continued)

Letting f ijk ∈ R denote the structure constants of g (i.e.,

[∂i , ∂j ] = f kij ∂k), we get the torsion Tφ to be

Tφ(Di ,Dj) = ∇iφj −∇jφi −φ([∂i , ∂j ]) = v̂0(µjXi −µiXj − f kij µk1).

This expression vanishes for all i , j iff v̂0 is an eigenvector of
Tij = µjXi − µiXj − f kij µk1 with eigenvalue λij = 0. Noting that

ℜ(λij) = −f kij µk , it follows that −f kij µk = 0. However, solving
these equations for all i , j , we get

ℜ(λ12) = 2µ3 = 0, ℜ(λ13) = −2µ2 = 0, ℜ(λ23) = 2µ1 = 0.

This implies that φ ≡ 0, which is not an anchor map. We have
thus proven that if ((Mat2(C), su(2)π,C2, φ), h) is a real metric
calculus, then it is not pseudo-Riemannian.
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The general statement for A = MatN(C) and M = CN

The general statement for A = MatN(C) and M = CN is as
follows.

Theorem

There exists a metric anchor map φ : g → CN such that the
resulting real metric calculus ((MatN(C), gπ,CN , φ), h) is
pseudo-Riemannian if and only if g ⊆ su(N) is not semisimple and
there exists a common eigenvector to all matrices in g.
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The End
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