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Preface

The purpose of the workshop is to stimulate research and, in an informal setting, foster the inter-
action of researchers using matrices in different areas of mathematics especially with a focus on
statistics. The workshop will provide a forum through which mathematicians and statisticians may
be better informed of the latest developments and newest techniques in linear algebra and matrix
theory and may exchange ideas with researchers from a wide variety of countries. As well as range
of invited speakers we are to strengthening the interactions between participants by organizing
special sessions in various of areas.

The theme of the workshop target the theory and applications using matrices in different
branches of science like: big data analytics, machine learning, computer and information science,
biology, physics, economics, engineering, mathematics and statistics.

Enjoy the conference!

Martin Singull
Chair of Organizing Committee

3





Venue and Program

Venue

The venue for the conference will be lecture room BL32 (also known as ’Nobel’), Campus Valla,
B-building (entrance 23), Linköping University. Click the link to get an interactive map. All
sessions will be in the same room.
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Abstract - Invited Speakers

The periodic pseudo-Jacobi inverse eigenvalue problem

Natalia Bebiano1, Wei-Ru Xu, Yi Gong and Guo-Liang Chen
1Universidade de Coimbra, Coimbra, Portugal

Abstract

The problem of reconstructing a periodic pseudo-Jacobi matrix, which is derived from the dis-
cretization and truncation of Schrödinger equation, arises in non-Hermitian quantum mechanics.
Also the reconstruction of the Hamiltonian system of an indefinite Toda lattice and the symmetry
reduction of the Wess-Zumino-Novikov-Witten model in quantum field theory are problems de-
serving the attention of physicists and mathematicians. In mathematics, this problem is referred
to as periodic pseudo-Jacobi inverse eigenvalue problem (hereafter PPJIEP), and concerns the
reconstruction from assigned spectral data of a specified periodic pseudo-Jacobi matrix Inspired
in a discrete version of Floquet theory in a space with indefinite metric [Math. Comp. 35 (1980)
1203-1220] and a van Moerbeke’s idea [Invent. Math. 37 (1976) 45-81], the PPJIEP problem is
solved. We use two methods to characterize the signature operator so that the solution exists.

This is joint work with Wei-Ru Xu, Yi Gong and Guo -Liang Chen (China). The problem
of reconstructing a periodic pseudo-Jacobi matrix, which is derived from the discretization and
truncation of Schrödinger equation, arises in non-Hermitian quantum mechanics. Also the recon-
struction of the Hamiltonian system of an indefinite Toda lattice and the symmetry reduction of
the Wess-Zumino-Novikov-Witten model in quantum field theory are problems deserving the at-
tention of physicists and mathematicians. In mathematics, this problem is referred to as periodic
pseudo-Jacobi inverse eigenvalue problem (hereafter PPJIEP), and concerns the reconstruction
from assigned spectral data of a specified periodic pseudo-Jacobi matrix Inspired in a discrete
version of Floquet theory in a space with indefinite metric [Math. Comp. 35 (1980) 1203-1220]
and a van Moerbeke’s idea [Invent. Math. 37 (1976) 45-81], the PPJIEP problem is solved. We
use two methods to characterize the signature operator so that the solution exists.

Keywords: inverse problem, tridiagonal matrices
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10 ABSTRACT - INVITED SPEAKERS

On tensor decompositions and rank

Göran Bergqvist
Linköping University, Linköping, Sweden

Abstract

We review some developments of tensor rank concepts and different ways of decomposing tensors,
including results for random tensors and symmetric tensors. We also discuss the use of neural
networks to determine tensor decompositions and ranks with some recent applications, and tensor
decompositions as a tool to simplify neural networks.

Keywords: Tensors, Decompositions, Rank
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Reviving pseudo-inverses: Asymptotic properties of large di-
mensional Moore-Penrose and ridge-type inverses with ap-
plications

Taras Bodnar1 and Nestor Parolya2
1Stockholm University, Stockholm, Sweden
2Delft University of Technology, Delft, The Netherlands

Abstract

In this paper, we derive high-dimensional asymptotic properties of the Moore-Penrose inverse and
the ridge-type inverse of the sample covariance matrix. In particular, the analytical expressions
of the weighted sample trace moments are deduced for both generalized inverse matrices and
are present by using the partial exponential Bell polynomials which can easily be computed in
practice. The existent results are extended in several directions: (i) First, the population covariance
matrix is not assumed to be a multiplier of the identity matrix; (ii) Second, the assumption of
normality is not used in the derivation; (iii) Third, the asymptotic results are derived under
the high-dimensional asymptotic regime. Our findings are used in the construction of improved
shrinkage estimators of the precision matrix that minimizes the Frobenius norm. Also, shrinkage
estimators for the coefficients of the high-dimensional regression model and the weights of the
global minimum variance portfolio are obtained. Finally, the finite sample properties of the derived
theoretical results are investigated via an extensive simulation study.

Keywords: Moore-Penrose inverse, Ridge-type inverse, Bell polynomials, Sample covariance ma-
trix, Random matrix theory, High-dimensional asymptotics

References

[1] Bodnar, T., Dette, H., Parolya, N. (2016). Spectral analysis of the Moore-Penrose inverse of a
large dimensional sample covariance matrix. Journal of Multivariate Analysis, 148:160-172.

[2] Imori, S., von Rosen, D. (2020). On the mean and dispersion of the Moore-Penrose generalized
inverse of a Wishart matrix. The Electronic Journal of Linear Algebra, 36:124-133.



12 ABSTRACT - INVITED SPEAKERS

Sorted L-One Norm Penalized Estimator of the high dimen-
sional precision matrices

Malgorzata Bogdan1,2, Giovanni Bonaccolto3, Ivan Hejny1, Philipp Kremer4, Sandra Paterlini5,

Riccardo Riccobello5, Piotr Sobczyk6, Jonas Wallin1

1Lund University, Lund, Sweden
2University of Wroclaw, Wroclaw, Poland
3Kore University of Enna, Enna, Italy
4EBS Universität für Wirtschaft und Recht, Wiesbaden, Germany
5University of Trento, Trento, Italy
6Wroclaw University of Science and Technology, Wroclaw, Poland

Abstract

Sparse graphical modeling has garnered significant attention in various academic disciplines. In
this study, we introduce two novel approaches, namely Gslope and Tslope, for estimating sparse
precision matrices. These approaches leverage Gaussian and T-student data, respectively, and
achieve sparsity by using the sorted L1-norm penalty on the elements the precision matrix. Unlike
the widely-used graphical LASSO estimator, Gslope and Tslope allow for additional dimensionality
reduction patterns by permitting some estimated elements of the precision matrix to be equal to
each other.

To analyze the pattern recovery of Gslope and Tslope, we present original asymptotic results on
the distribution of the SLOPE esimators of the precision matrices of elliptically contoured distribu-
tions. Furthermore, we propose tuning parameter selection strategies that guarantee control over
the probability of including false edges between disconnected graph components and empirically
control the False Discovery Rate for block diagonal covariance matrices.

To assess the performance of our proposed methods, we conduct extensive simulations and
real-world analyses, comparing them against other state-of-the-art approaches in sparse graphical
modeling. The results confirm that Gslope and Tslope serve as two effective tools for estimating
precision matrices in scenarios involving Gaussian, T-student, and mixture data.

Keywords: Precision Matrix, Graphical Model, Penalized Estimation, Sorted L-One Norm
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Efficient inversion of large sparse positive definite matrices

Krzysztof Podgórski, Micha l Kos, and Hanqing Wu
Lund University, Lund, Sweden

Abstract

The decompositions of matrices such as triangular, Cholesky, singular value, etc, are often im-
portant tools for their inversion, which, in turn, is the basis for many statistical methods, to
mention fitting regression models or estimation of covariance matrix with constraints for multi-
variate Gaussian data. Additionally to this, in many applications there is an increasing need for
high-dimensional methods that often naturally lead to inverting high-dimensional sparse matrices.
We start with an overview of the decompositions methods with the emphasis on an often not
realized connection between the inversion and decomposition of a positive definite matrix. Then
we argue that these decompositions are not suitable for the inversion of sparse matrices. Instead
we propose an alternative method that is based on a dyadic algorithm that has been introduction
in [2] for the purpose of efficient orthogonalization of the B-splines and used for the functional
data analysis in [1]. The inversion method is made of two steps. The method requires first to
gather non-zero terms close to the diagonal, the process that connects to the classical band-width
minimization problem in computing. Then it uses the dyadic algorithm that compute inverse (and
more) faster than any standard method. We discuss new contributions and generalizations to the
both steps and show results of numerical studies involving the presented techniques.

Keywords: Sparse positive definite matrices, Cholesky decomposition, Gauss elimination method,
orthogonalization, band matrices.

References

[1] Basna, R., Nassar, H., and Podgórski, K. (2022). Data driven orthogonal basis selection for
functional data analysis. Journal of Multivariate Analysis, 189:104868.

[2] Liu, X., Nassar, H., Podgórski, K. (2022). Dyadic diagonalization of positive definite band
matrices and efficient b-spline orthogonalization. Journal of Computational and Applied Math-
ematics, 414: 114444.
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Abstract - Contributed Speakers

Revisitation of matrix partial orderings

Oskar Maria Baksalary
Faculty of Physics, Adam Mickiewicz University, Poznań, Poland

Abstract

In 2008 the author delivered a talk at the Fifth Autumn Symposium of the Research Training Group
(Graduate School) “Statistical Modeling”, in Bommerholz near Dortmund, Germany. The address,
entitled Along Route 66 with Götz Trenkler, celebrated Professor Götz Trenkler’s 65th birthday.
At that time the set of joint publications of Professor Trenkler and the author consisted of four
research articles and 7 problems/solutions published in IMAGE – the Bulletin of the International
Linear Algebra Society. At present the set contains 41 joint articles and over 40 problems/solutions
published in different mathematical journals.

The present talk will reach back to 2008 and lead through the 15 subsequent years of our joint
research (and friendship). A subjective selection of the most valuable results obtained during this
period will be presented. A particular attention will be paid to one of our recent papers dealing with
the notion of a partial order, namely [O.M. Baksalary, G. Trenkler, A partial ordering approach
to characterize properties of a pair of orthogonal projectors. Indian Journal of Pure and Applied
Mathematics 52 (2021) 323-334]. Several new findings concerned with the topic will be indicated
as well.

Keywords: Professor Götz Trenkler’s 80th birthday on July 14, 2023.
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16 ABSTRACT - CONTRIBUTED SPEAKERS

Leveraging properties of Adjacency Matrices for topology
learning in partially observed networks of physical flow

Deepjyoti Deka
Los Alamos National Laboratory, Los Alamos, USA

Abstract

Physical Flow networks model multiple large scale systems that are part of modern society, in-
cluding power grids, gas networks and thermal-systems. Such networks, in both static or dynamic
regime, follow flow conservation and are potential driven. For example, flows on lines/edges in
power grids follow Kirchhoff’s laws. Mathematically, the relation between network states θ and
external disturbances p are represented as

p = HBθ where HB is the weighted adjacency matrix for network G = (N ,L) with lines L. (1)

Estimating the topology of physical flow networks has multiple applications in control, fault
detection and cyber security of corresponding networks. Often measurements available for topology
learning are limited to state measurements at a subset of nodes in the network. Further, as physical
flow networks often pertain to critical infrastructure, learning algorithms for topology necessitate
guarantees on correctness and convergence.

In this talk, we show that properties of HB (weighted Laplacian matrix) provide a rich frame-
work to arrive at tractable learning algorithms for physical flow networks, using only partially
observed nodal states θ. We first show that for radial networks, in particular, Laplacian matrix
leads to the development of efficient greedy algorithms for topology recovery using second order
statistics of state values. Next we use properties of inverse Laplacian matrices on meshed net-
works within the framework of probabilistic graphical models to prove topology recovery using
observations that scale polynomially with the size of the network [1, 2]

Keywords: Monotonicity, flow conservation, dynamical Systems, power grids, graphical models,
concentration bounds.

References

[1] D. Deka, V. Kekatos, and G. Cavraro. ”Learning Distribution Grid Topologies: A Tutorial.”
IEEE Transactions on Smart Grid (2023).

[2] H. Doddi, D. Deka, S. Talukdar, and M. Salapaka. ”Efficient and passive learning of networked
dynamical systems driven by non-white exogenous inputs.” In International Conference on Ar-
tificial Intelligence and Statistics, pp. 9982-9997. PMLR, 2022.
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Construction of the Design Matrix for Generalized Linear
Mixed-Effects Models in the Context of Clinical Trials of
Treatment Sequences

Francisco J. Diaz
Department of Biostatistics and Data Science, The University of Kansas
Medical Center, Kansas City, KS, United States

Abstract

The estimation of carry-over effects is a difficult problem in the design and analysis of clinical tri-
als of treatment sequences including cross-over trials. Except for simple designs, carry-over effects
are usually unidentifiable and therefore nonestimable. Solutions such as imposing parameter con-
straints are often unjustified and produce differing carry-over estimates depending on the constraint
imposed. Generalized inverses or treatment-balancing often allow estimating main treatment ef-
fects, but the problem of estimating the carry-over contribution of a treatment sequence remains
open in these approaches. Moreover, washout periods are not always feasible or ethical. A common
feature of designs with unidentifiable parameters is that they do not have design matrices of full
rank. Thus, we propose approaches to the construction of design matrices of full rank, without
imposing artificial constraints on the carry-over effects. Our approaches are applicable within the
framework of generalized linear mixed-effects models. We present a new model for the design and
analysis of clinical trials of treatment sequences, called Antichronic System, and introduce some
special sequences called Skip Sequences. We show that carry-over effects are identifiable only if
appropriate Skip Sequences are used in the design and/or data analysis of the clinical trial. We
explain how Skip Sequences can be implemented in practice, and present a method of computing
the appropriate Skip Sequences. We show applications to the design of a cross-over study with 3
treatments and 3 periods, and to the data analysis of the STAR*D study of sequences of treatments
for depression ([1]).

Keywords: carry-over effects, cross-over design, estimability, generalized inverses, generalized
least squares, identifiability, random effects linear models

References

[1] Diaz, F. J. (2018). Construction of the Design Matrix for Generalized Linear Mixed-Effects
Models in the Context of Clinical Trials of Treatment Sequences. Revista Colombiana de Es-
tad́ıstica,41:191-233.



18 ABSTRACT - CONTRIBUTED SPEAKERS

Variance change point detection with a Binomial method

Elias Erdtman1, Dietrich von Rosen1,2 and Martin Singull1
1Department of Mathematics, Linköping University, Linköping, Sweden
2Energy & Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden

Abstract

We consider a simple method for detecting a change with respect to the variance in a sequence
of independent normally distributed observations with a constant mean. The method filters out
extreme values and divides the sequence into equally large subsequences. For each subsequence,
the count of extreme values is translated as a binomial random variable which is tested toward
the expected number of extremes. The expected number of extremes comes from prior knowledge
of the sequence and a specified probability of how common an extreme value should be. Then
specifying the significance level of the goodness of fit test gives how many extreme observations
are needed to detect a change.

The approach is extended to a sequence of independent multivariate normally distributed ob-
servations by using the Mahalanobis distance to transform the sequence into a univariate sequence
and apply the same approach.

Keywords: Change point, Variance
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Comments on the estimation and testing under multivariate
and matrix, normal and t-distributions

Katarzyna Filipiak
Institute of Mathematics, Poznan University of Technology, Poland

Abstract

In this talk we compare the estimators of unknown parameters under multivariate normal and
multivariate t distribution as well as we show respective estimators expressed in terms of matrix
normal and matrix t distribution. The comparison of likelihood ratio test for testing covariance
structure under multivariate and matrix t distributions will be also given.

Keywords: multivariate normal distribution, matrix normal distribution, multivariate t-distribution,
matrix t-distribution



20 ABSTRACT - CONTRIBUTED SPEAKERS

Dimension Reduction for Clustering Italian Children Accord-
ing to their Attitude towards Food Consumption

Cinzia Franceschini1 and Nicola Loperfido2
1Università di Scienze Gastronomiche di Pollenzo - Pollenzo (Bra), Italy
2Dipartimento di Economia, Società e Politica (DESP), Università degli Studi di Urbino “Carlo
Bo”, Urbino, Italy

Abstract

The University of Gastronomic Sciences (Pollenzo, Italy) conducted a survey aimed at investigating
the Italian children’s attitude towards food and its consumption at school. Data were collected from
questionnaires administered to 1108 children all over Italy. First, we used model-based clustering
and k-means clustering on the original data. Then we used principal component analysis to reduce
the number of variables before clustering, a procedure often referred to as to either tandem clus-
tering ([1]) or reduced k-means ([3]). Finally, we clustered the data projections onto the directions
found by means of projection pursuit and invariant coordinate selection. Projection pursuit is a
multivariate statistical technique aimed at finding interesting low-dimensional data projections. It
addresses three major challenges of multivariate analysis: the curse of dimensionality, the presence
of irrelevant features and the limitations of visual perception ([2]). Invariant coordinate selection is
a multivariate statistical method aimed at detecting data structures by means of the simultaneous
diagonalization of two scatter matrices. Statistical applications of invariant coordinate selection
include cluster analysis, independent component analysis, outlier detection and regression analysis
([4]). Our statistical analysis makes a case for projecting the data onto lower dimensional subspaces
before clustering, even when the number of variables is much smaller than the number of units.
Also, choices of subspaces guided by either projection pursuit or invariant coordinate selection
might lead to better clustering results than those guided by principal component analysis.

Keywords: K-means clustering, Invariant coordinate selection, Principal component analysis,
Projection pursuit, Reduced K-means, Tandem analysis

References

[1] Arabie, P. and Hubert, L. (1994). Cluster analysis in marketing research. In Advanced methods
of marketing research, (ed Bagozzi, R. P.), Blackwell, Oxford; 160-189.

[2] Sun, J. (2006). Projection Pursuit. Encyclopedia of Statistical Sciences, 10.

[3] Terada, Y. (2014). Strong Consistency of Reduced K-means Clustering. Scandinavian Journal
of Statistics, 41:913 -931.

[4] Tyler, D. and Critchley, F. and Dümbgen L. and Oja, H. (2009). Invariant co-ordinate selection
(with discussion). J. R. Statist. Soc. B, 71:549-592.
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Convex optimization geometry of nonnegative variance esti-
mators in time series kriging

Martina Hančová1 and Jozef Hanč2
1Institute of Mathematics, P. J. Šafárik University, Košice, Slovakia
2Institute of Physics, P. J. Šafárik University, Košice, Slovakia

Abstract

Within the framework of convex optimization geometry [1], we investigate the theoretical prop-
erties and computational algorithms for nonnegative variance estimators as applied in time series
predictions. Our forecasting approach, generally referred to as time series kriging [2], is founded
on linear time series models where observations are described by a linear mixed model. Employing
such a geometrical perspective not only fosters an intuitive and natural comprehension of the given
estimators but also serves as a very valuable guide for accelerating and reducing computational
complexity in numerical calculations. We use the convex geometry to improve existing algorithms
for nonnegative estimators based on least squares or maximum likelihood [2].

These improvements are crucial in computational research as a third paradigm in controlling
and developing mathematical theory and practice. Monte Carlo and bootstrap simulations, imple-
menting our efficient algorithms, extend beyond time series econometrics and finance, proving their
importance also for fast data analysis based on exact probability distributions in areas like multi-
dimensional statistics or measurement uncertainty analysis in metrology. We illustrate our results
through a systematic design of simulation experiments [3] using high-performance computing and
open data science tools [4].

Keywords: time series prediction, linear mixed models, matrix analysis, high-performance com-
puting

Funding: This work was supported by the Slovak Research and Development Agency under the
Contract no. APVV-21-0216 and APVV-21-0369.

References

[1] Dattorro, J. (2019). Convex Optimization Euclidean Distance Geometry 2e. Meboo Publishing:
Palo Alto.

[2] Hančová, M., Gajdoš, A., Hanč, J., and Vozáriková, G. (2021). Estimating variances in time
series kriging using convex optimization and empirical BLUPs. Stat Papers 62, 4:1899–1938.

[3] Lorscheid, I., Heine, B. O., and Meyer, M. (2012). Opening the ‘black box’ of simulations: in-
creased transparency and effective communication through the systematic design of experiments.
Comput Math Organ Theory 18, 1:22–62.

[4] Hančová, M., Gajdoš, A., and Hanč, J. (2022). A practical, effective calculation of gamma
difference distributions with open data science tools. J. Stat. Comput. Simul. 92, 11:2205–2232.



22 ABSTRACT - CONTRIBUTED SPEAKERS

Equality of BLUEs and their covariances under error covari-
ance change for a linear model and its submodels, with links
to data confidentiality and encryption

Stephen Haslett
School of Mathematical and Computational Sciences & Research Centre for Hauora and Health,
and Environmental Health Intelligence NZ, Massey University, Palmerston North & Wellington,
Aoteoroa/New Zealand; Research School of Finance, Actuarial Studies and Statistics, The Aus-
tralian National University, Canberra ACT 2601 Australia; NIASRA, Faculty of Engineering and
Information Sciences, University of Wollongong, NSW 2522, Australia.

Abstract

The necessary and sufficient condition for BLUEs of estimable functions of parameters in a linear
fixed effect model being un-altered by a change in error covariance structure is due to [1]. When the
original full linear model is made smaller by reducing the number of regressors (which may include
interactions of any order), block diagonal or diagonal matrices also provide insight into conditions
for the entire set of full, small, and intermediate models each to retain their own BLUEs ([3]; [2]).
The role that such changes in error covariance structure can play in data confidentiality and data
encryption is outlined, especially when the covariance of the BLUEs is also retained.

This talk is based on joint work with Jarkko Isotalo, Augustyn Markiewicz and Simo Puntanen.

Keywords: BLUE, BLUP, Confidentialised unit record files, Covariance, Data cloning, Data
confidentiality, Encryption, Linear model, Residuals.
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Spatial weight matrices and their properties

Jan Hauke1 and Martin Singull2
1Adam Mickiewicz University, Poznan, Poland
2Linköping University, Linköping, Sweden

Abstract

Spatial econometrics models are inextricably linked with the consideration of spatial effects, the
importance of which has been proven both theoretically and empirically. Therefore, an important
element of this modeling is to determine the type and scope of existing spatial relationships between
areas, by constructing spatial weights to reflect spatial interactions. The starting point is the
consideration of two types of spatial relationships reflecting side effects modeled by incorporating
a (spatially weighted) variable directly into the model (spatial lag model) or by incorporating a
spatial relationship in the (spatially weighted) error term in the model (spatial error). One of
the simplest ways to attain identification in spatial models, as is common in applied literature, is
specifying exogenously a weighting matrix W (it has an arbitrary decided formula). The exogenous
approach is by far the most common. It includes, i.a., the use of a binary contiguity criterion, k-
nearest neighbours, and kernel functions based on distance. This approach, in addition to modeling,
allows for quantitative estimation of the strength of spatial influence (based on the W matrix) on
the change in the value of the observed features. One of the indicators used for this purpose is
the Morans I coefficient. The second approach is estimating W from data. This approach has
some drawbacks, as discussed by [2]. Regardless of the method of introducing the W matrix into
the model, it plays a key role in spatial econometrics, see [3], [1], and [4]. The properties of the
weighting matrix W, taking into account various aspects and models, will be discussed in this
presentation.

Keywords: Spatial models, spatial weight matrices
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Eigenvalues of large sample correlation matrices

Johannes Heiny
Stockholm University, Stockholm, Sweden

Abstract

Many fields of modern sciences are faced with high-dimensional data sets. In this talk, we in-
vestigate the spectral properties of a large sample correlation matrix R. Results for the spectral
distribution, extreme eigenvalues and functionals of the eigenvalues of R are presented in both
light- and heavy-tailed cases. The findings are applied to independence testing and to the volume
of random simplices.

Keywords: Random matrix, high dimension, correlation matrix, eigenvalues, spectral statistics.
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Prediction and Testing of Random Effects in Linear Mixed
Models

Jarkko Isotalo1, Stephen Haslett2 and Simo Puntanen1

1Tampere University, Tampere, Finland
2Massey University, Palmerston North & Wellington, New Zealand

Abstract

We consider the linear mixed effects model

y = Xβ + Zu + ε,

where y is an n × 1 observable random vector, X and Z are known model matrices, β is a p × 1
vector of unknown fixed parameters, u is a q × 1 vector of unobservable random effects, and ε is
an n× 1 unobservable random error vector. We further assume that random vectors u and ε are
uncorrelated and are normally distributed, i.e., u ∼ N(0, σ2Gθ), ε ∼ N(0, σ2R), Cov(u, ε) = 0,
where σ2 is a positive unknown scalar and θ is an unknown parameter vector.

In this setup, we consider different methods for predicting the conditional mean x′∗β + z′∗u,
when x∗ and z∗ are known given vectors. Particularly, we give conditions when the BLUP of
x′∗β + z′∗u is equal to the BLUE of the conditional mean, see [1]. Obtained results on prediction
are then applied to the problem of testing hypotheses set on the conditional mean. In linear
mixed models, hypothesis testing related to the random effects are often done by defining the
structure of the covariance matrix Gθ in competing hypotheses and then testing them by using
the likelihood ratio statistic or by some other suitable test statistic, see, e.g.,[2]. In this research,
we set hypotheses on the conditional mean x′∗β + z′∗u and then consider different approaches for
testing them. Specifically, we show that testing statistic obtained by the interval prediction with
use of the BLUP is equivalent to the extended likelihood ratio test statistic.

Keywords: BLUE, BLUP, Likelihood-ratio test.
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On the Expectations of Equivariant Matrix-valued Functions
of Wishart and Inverse Wishart Matrices

Grant Hillier1 and Raymond Kan2

1University of Southampton, Southampton, United Kingdom
2University of Toronto, Toronto, Canada

Abstract

Many matrix-valued functions of an m ×m Wishart matrix W , Fk(W ), say, are homogeneous of
degree k in W , and are equivariant under the conjugate action of the orthogonal group O(m), i.e.,
Fk(HWH ′) = HFk(W )H ′, H ∈ O(m). It is easy to see that the expectation of such a function
is itself homogeneous of degree k in Σ, the covariance matrix, and are also equivariant under the
action of O(m) on Σ. The space of such homogeneous, equivariant, matrix-valued functions is
spanned by elements of the type W rpλ(W ), where r ∈ {0, . . . , k} and, for each r, λ varies over the
partitions of k − r. Here, pλ(W ) denotes the power-sum symmetric function indexed by λ. In the
analogous case where W is replaced by W−1, these elements are replaced by W−rpλ(W−1). In
this paper we derive recurrence relations and analytical expressions for the expectations of such
functions. Our results provide highly efficient methods for analysing the properties of, and the
computation of, all such moments, even those of very high order k. We thus provide a complete
toolbox for analysing the properties of any matrix-valued function in this class.

Keywords: Wishart distribution, Inverse Wishart distribution, Equivariant function, Recursive
relation
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MLEs and Hotelling’s T2 Statistics of a class of Matrix Nor-
mal Distribution Arisen from Phylogenetic Problems and
Their Properties

Hao Chi Kiang
Linköping University, Linköping, Sweden

Abstract

Brownian Motion along phylogeny is commonly used to model trait evolution along a given
phylogenetic tree [1]. This phylogenetic Brownian Motion model can be reduced to vecX ∼
N (µ⊗ 1,Σ⊗ C) where X is an n × p matrix; C is an n × n given (constant) positive definite
matrix and µ would be the trait value of the root of the tree.

Maximum likelihood estimators µ̂ and Σ̂ of this model is well-known, but their exact distribution
properties are much less discussed nor utilized. My work shows that 1) µ and n

n−1 Σ̂ are in fact

unbiased; 2) that n
n−1 Σ̂ is Wishart-distributed; 3) that there is independence between µ̂ and Σ̂; 4)

that there is a Hotelling’s T 2 distribution around µ, which can provide an exact confidence region;
5) a useful sufficient condition for the XAXT to be independent of BXD for any suitably-sized
matrices A, B, and D when the data matrix X were generated from this Brownian Motion model.

Keywords: matrix normal distribution, kronecker product covariance, confidence region, maxi-
mum likelihood estimator
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Matrix Operations for Tensor Algebra, with Statistical Ap-
plications

Nicola Loperfido
Dipartimento di Economia, Società e Politica (DESP), Università degli Studi di Urbino “Carlo
Bo”, Urbino, Italy

Abstract

The star product [1] and the matrix reshaping [2] are two matrix operations acting on block
matrices. The star product of two matrices is the matrix arranging linear combinations of the
block of the second matrix, where the combinations’ coefficients are the elements of the first
matrix. The reshaping of a block matrix vectorizes, transposes and stacks on top of each other
the blocks of the matrix itself. Both the star product and the matrix reshaping connect matrices
and tensors, since block matrices might be regarded as the unfoldings of third and fourth order
tensors. Firstly, we investigate the mathematical properties of the two operations with respect
to other matrix operations, as for example matrix multiplication, matrix transposition and tensor
product. Secondly, we investigate the relationships between star product, tensor unfolding and
tensor contraction. Thirdly, we use the matrix transposition, the commutation matrix and the
matrix reshaping for tensor symmetrization and symmetric tensor decompositions. As a first
statistical application, we consider multivariate density approximation, where a normal, finite
location mixture is used to approximate a multivariate distribution with the same first three
cumulants. As a second statistical application, we use tensor algebra to deal with random samples
from random matrices.

Keywords: Block matrix, Density approximation, Finite mixture, Higher-order moments, Sub-
tensor, Tensor contraction, Tensor unfolding.
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Fourth cumulant for the random sum of random vectors

Stepan Mazur1,2, Farrukh Javed3 and Nicola Loperfido4

1Örebro University, Örebro, Sweden
2Linnaeus University, Växjö, Sweden
3Lund University, Lund, Sweden
4Università degli Studi di Urbino ”Carlo Bo”, Urbino (PU), Italy

Abstract

The fourth cumulant for the random sum of random vectors is considered. A formula is presented
for the general case when the aggregating variable is independent of the random vectors. Two
important special cases are considered. In the first one, multivariate skew-normal random vectors
are considered that are aggregated by a Poisson variable. The second case deals with multivariate
asymmetric generalized Laplace random vectors and aggregation is made by a negative binomial
variable. There is a well-established relation between asymmetric Laplace motion and negative
binomial process that corresponds to the invariance principle of the random sum of random vec-
tors for the generalized asymmetric Laplace distribution. We explore this relation and provide a
multivariate continuous time version of the results.

Keywords: Fourth cumulant, Random sum of random vectors, Skew-normal, Laplace motion
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Applications of partial and block trace operators
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2Institute of Mathematics, Poznań University of Technology, Poland
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Abstract

Let us consider an experiment regarding some independent objects, for which we measure few
characteristics at few time or location points. For two such sources of variability, the separabil-
ity is the natural assumption for the covariance matrix structure, and means that the time or
location points are correlated ”independently” of characteristics and characteristics are correlated
”independently” of time or location points. In the literature maximum likelihood estimators of the
positive definite covariance matrix having the separable structure have been proposed, however,
the explicit form is not available. It means, that to get the MLEs one should solve numerically
respective system of equations. The aim of the talk is to compare the available approaches and to
show, that the one based on the partial and block trace operators is the most efficient.

Since similar numerical problems appear in the estimation of separable covariance matrix via
Frobenius norm or entropy loss function, we also show that the method based on partial and block
trace operators outperforms the existing approaches.

Keywords: covariance matrix, separable structure, estimation, partial trace operator, block trace
operator
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Optimizing the Allocation of Trials to Sub-Regions in Multi-
Environment Crop Variety Testing for Multi-Annual Exper-
iments

Maryna Prus and Hans-Peter Piepho
University of Hohenheim, Stuttgart, Germany

Abstract

New crop varieties are usually evaluated for their performance in a target population of environ-
ments (TPE). This evaluation requires conducting randomized field trials at several environments
sampled from the TPE. Such trials are called multi-environment trials (MET). If the TPE is large
and can be suitably stratified along geographical borders or agro-ecological zonations, it may be
advantageous to subdivide the TPE into sub-regions. If the same set of genotypes is tested at a
number of locations in each of the sub-regions, a linear mixed model may be fitted with random
genotype-within-sub-region effects. The first analytical results to optimizing allocation of trials to
sub-regions have been obtained in [1]. That paper considers only a single year of trials. However,
in practice the responses are usually being observed during several years. In this work we consider
the extended linear mixed model that incorporates the influence of the years. We propose an an-
alytical solution for optimal allocations of trials and illustrate the obtained results by a real data
example.

Keywords: Target population of environments, Multi-environment trials, Linear mixed model,
Prediction, Optimal design
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Personal Photographic Glimpses of Professor Götz Trenkler

Simo Puntanen
Tampere University, Tampere, Finland

Abstract

In addition to more photos, since 1983, will be shown up.

Keywords: Dortmund, Tampere, Calcutta, Montreal, Shanghai, Windsor, Bedlewo, Tomar,
Auckland, Uppsala, Lyngby, Hyderabad, Fort Lauderdale, . . . , Manipal, you name it!
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Applications of the Kronecker product when solving matrix
equations and constructing matrix derivatives

Dietrich von Rosen
Energy & Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden, and Depart-
ment of Mathematics, Linköping University, Linköping, Sweden

Abstract

The Kronecker product of two matrices generates a tensor space and an orthogonal complement
to this space can be obtained. The result is useful when, for example, the matrix equation in X,
say AXB = 0, with A and B known, has to be solved. The approach can be extended to cover
the equation AiXBi = 0, i ∈ {1, 2}, but it cannot handle AiXBi = 0, i ∈ {1, 2, 3}.

Concerning matrix derivatives the Kronecker product can be used to define different types of
derivatives. Let X =

∑
ij xijeid

>
j and Y =

∑
k` yk`gkf

>
` , where dj , ei, gk,f ` are unit basis

vectors. Then

dX

dY
=

∑

i,j,k,`

∂xij
∂yk`

eid
>
j ⊗ gkf `.

There exist several alternative derivatives, for example,

dX

dY
=

∑

i,j,k,`

∂xij
∂yk`

(dj ⊗ ei)(f ` ⊗ gk)>.
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How to Treat Partial Errors-In-Variables Models Efficiently

Burkhard Schaffrin1 and Kyle Snow2*
1The Ohio State University, Division of Geodetic Science, School of Earth Sciences, Columbus,
Ohio, USA
2Polaris Geospatial Services, Westerville, Ohio, USA

* With computational assistance from Shahram Jazaeri.

Abstract

The standard Errors-In-Variables (EIV) Model arises when all the entries of the coefficient matrix
that describes the relationships between the unknown parameters and a collected data set stem
from observations themselves and must be considered random. When some of these elements are,
however, fixed, then one would face a Partial EIV-Model for which Xu et al. [4] proposed a split
approach in which the parameters with fixed coefficients are determined by a classical Least-Squares
approach and those with random coefficients by a (weighted) Total Least-Squares (TLS) procedure.
In order to reduce the necessary bookkeeping for two sorts of coefficients, it is here proposed to
consider the fixed coefficients as “random with zero variance” and, as a consequence, allow singular
dispersion matrices for the original EIV-Model. Snow [3] created the first generation of algorithms
for such generalized EIV-Models, and here the next generation will be presented which shows higher
efficiency, in particular when the dispersion matrix of the coefficients exhibits a Kronecker-product
structure as exploited by Schaffrin and Wieser [2].

Keywords: Errors-In-Variables Model, Total Least-Squares, singular covariance matrices
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What is the gradient of a scalar function defined on a sub-
space of square matrices?

Shriram Srinivasan and Nishant Panda
Los Alamos National Laboratory, Los Alamos, United States

Abstract

We illustrate a technique to calculate the gradient of scalar functions defined on any arbitrary
matrix subspace. It generalizes our earlier work titled “What is the gradient of a scalar function
of a symmetric matrix?”, in which we considered the special case of the subspace of symmetric
matrices. Extant methods to calculate the gradient in such cases have an inherent flaw that
leads to spurious results which populate several publications, as well as respected textbooks and
handbooks on matrix calculus. One of our important contributions has been to examine these
sources and reproduce the spurious results in a rigorous and concrete mathematical setting of a
finite-dimensional inner-product space. In this process, we discover the inherent flaw and also
a remedy. We demonstrate two ways to calculate the derivative/gradient and second derivative
for scalar functions of matrices defined over an arbitrary matrix subspace; the first method is by
considering any (differentiable) extension to the space of square matrices and projection of its
gradient onto the given subspace. The second method utilizes an ordered basis and computes
each component of the gradient through evaluation of the directional derivative. All the ideas
presented are illustrated by non-trivial examples. Moreover, the presentation of matrix calculus in
the language of calculus on inner-product spaces will be significant and meaningful for engineers
and researchers working in inter-disciplinary fields to avoid the conceptual pitfalls that exist.

Keywords: matrix calculus, patterned matrix, gradient, matrix functional
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A philatelic introduction to Ada Lovelace, Lord Byron &
Charles Babbage

George P. H. Styan
McGill University, Montréal (Québec), Canada

Abstract

Augusta Ada King, countess of Lovelace (1815–1852) was a daughter of the poet Lord George
Gordon Byron (1788–1824). Ada Lovelace became interested in Babbage’s analytic engine and
described how it could be programmed. Charles Babbage (1791–1871) originated the modern
analytic computer. He invented the principle of the analytical engine, the forerunner of the modern
electronic computer. [MacTutor]

Keywords: Ada Lovelace, Lord Byron, Charles Babbage, mathematical philately, analytical en-
gine, modern electronic computer, postage stamp, personalized stamp, stamps from Ukraine, Jeff
Miller’s website, delcampe, MacTutor, Wikipedia.
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On the Uniqueness of Correspondence Analysis Solutions

Michel van de Velden, Rick Willemsen, and Wilco van den Heuvel
Econometric Institute, Erasmus University Rotterdam, The Netherlands

Abstract

In correspondence analysis (CA), rows and columns of a contingency table are optimally repre-
sented by a k-dimensional approximation. As CA is a dimension reduction technique, one expects
the k-dimensional approximation to be non-unique. That is, we expect that there are different
contingency tables that lead to the same k-dimensional CA approximation. However, [1] find in
computational experiments that, for the case where k = 3 (which is commonly used in CA appli-
cations) only one contingency table exists corresponding to the low dimensional CA solution. In
this paper, we tackle this problem from a theoretical perspective. We show that k-dimensional CA
solutions are not necessarily unique. That is, two distinct contingency tables may have the same k-
dimensional approximation. We present necessary and sufficient conditions for the non-uniqueness
of CA solutions. Furthermore, based on the sufficient conditions, we present a procedure to gen-
erate contingency tables with non-unique k-dimensional CA solutions. Finally, we note that the
necessary conditions are rather restrictive and unlikely to be satisfied by empirical data. Hence,
in practice, a CA solution most likely only corresponds to one contingency table.

Keywords: Correspondence analysis, inverse problems, uniqueness
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Large deviations of extremal eigenvalues of sample covariance
matrices

Martin Singull1, Denise Uwamariya2 and Xiangfeng Yang1

1Department of Mathematics, Linköping University, Linköping, Sweden
2Department of Mathematics, University of Rwanda, Rwanda

Abstract

Let X be a p × n random matrix whose entries are independent and identically distributed real
sub-Gaussian random variables with zero mean and unit variance. (i) Large deviations of the
largest and smallest eigenvalues of XXT /n are discussed in this talk, under the assumption that
both the dimension size p and the sample size n tend to infinity with p(n) = o(n). This study
generalizes one result obtained in [1] and [2]. (ii) Large deviations of the 2-norm condition number
of X are also discussed in the talk when p is either fixed or p = p(n)→∞ with p(n) = o(n).

Keywords: Large deviations; sample covariance matrices; extremal eigenvalues; condition num-
bers
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Special Session - Tensor methods
in Statistics

Organizer: Nicola Loperfido
Dipartimento di Economia, Società e Politica (DESP), Università degli Studi di Urbino “Carlo
Bo”, Urbino, Italy

Tensor methods are becoming increasingly popular in Statistics. They are particularly useful when
dealing with higher moments of multivariate distributions or with data generated from matrix-
variate distributions. This session presents some of the many applications of tensor methods in
Statistics, and motivates them with both real data and theoretical arguments.

The session will consist of the following talks:

• Cinzia Franceschini – Dimension Reduction for Clustering Italian Children According to their
Attitude towards Food Consumption

• Nicola Loperfido – Matrix Operations for Tensor Algebra, with Statistical Applications

• Stepan Mazur – Fourth cumulant for the random sum of random vectors

• Dietrich von Rosen – Applications of the Kronecker product when solving matrix equations
and constructing matrix derivatives
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Celebration of Götz Trenkler’s
80th birthday

Special Session in celebration of Götz Trenkler’s 80th birth-
day – Matrix analysis as a basis of applied sciences

Organizers: Oskar Maria Baksalary1, Martin Singull2, and Simo Puntanen3

1Adam Mickiewicz University, Poznań, Poland
2Linköping university, Linköping, Sweden
3Tampere University, Tampere, Finland

The session celebrates the 80th birthday of Professor Götz Trenkler, which took place on July 14,
2023. Professor Trenkler is at present Professor Emeritus at the Dortmund University of Tech-
nology, where he has spent last forty years of his scientific career, since he was appointed Full
Professor of Statistics and Econometrics in 1983. Scientific interests of Professor Trenkler spread
over several research areas, such as: applications of mathematical methods (e.g., in econometrics,
physics, statistics), pure and applied linear algebra, statistical inference, and mathematical edu-
cation. Professor Trenkler is an author or coauthor of eight monographs, around 200 scientific
articles, and about 200 other contributions published in scientific journals. He has supervised 25
Ph.D. students. A light was shed on selected (and then up-to-dated) scientific achievements of
Professor Trenkler in a Festschrift dedicated to him on the occasion of his 65th birthday published
in 2009 [Statistical Inference, Econometric Analysis and Matrix Algebra – Festschrift in Honour of
Götz Trenkler (B. Schipp, W. Krämer, eds.), Springer, Heidelberg, 2009, DOI.

Professor Trenkler has been a frequent participant of the meetings within the series of Interna-
tional Workshops on Matrices and Statistics (IWMS), taking part already in the very first of
them organized in Tampere, Finland, in 1990 (under the name International Workshop on Linear
Models, Experimental Designs, and Related Matrix Theory). Since then Professor Trenkler has
taken part in 14 workshops bearing the logo of IWMS, for several years acting as a member of
their International Organizing Committee. In 2003 Professor Trenkler was the chair of the Local
Organizing Committee of The Twelfth International Workshop on Matrices and Statistics held at
the University of Dortmund.

The session will consist of the following talks:

• Oskar Maria Baksalary – Revisitation of matrix partial orderings,

• Jarkko Isotalo – Prediction and Testing of Random Effects in Linear Mixed Models,

• Simo Puntanen – Personal photographic glimpses of Professor Götz Trenkler,

• George P. H. Styan, – A philatelic introduction to Ada Lovelace, Lord Byron & Charles
Babbage (online).

Further contributions to the session by Professor Trenkler’s collaborators, colleagues, friends, and
scientific followers are foreseen and welcome.
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42 CELEBRATION OF GÖTZ TRENKLER’S 80TH BIRTHDAY

A philatelic introduction to Alfred Nobel, Sir Roger Penrose
& Zu Chongzhi

Oskar Maria Baksalary1 and George P. H. Styan2

1Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
2McGill University, Montréal (Québec), Canada

Abstract

Alfred Bernhard Nobel (1833–1896) was a Swedish chemist, inventor, and philanthropist, well
known for having bequeathed his fortune to establish the Nobel Prize. [MacTutor] “Sir Roger
Penrose (b. 1931) was awarded one half of the 2020 Nobel Prize in Physics for the discovery that
black hole formation is a robust prediction of the general theory of relativity”. [Wikipedia] Zu
Chongzhi (429–500) was a “Chinese astronomer and mathematician most notable for calculating
π as between 3.1415926 and 3.1415927”. [Wikipedia]

Keywords: Alfred Bernhard Nobel, Nobel Prize, Sir Roger Penrose, Zu Chongzhi, mathematical
philately, postage stamp, personalized stamp, stamps from Ukraine, approximations to π, Jeff
Miller’s website, delcampe, MacTutor, Wikipedia.
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Abstract

Stefan Banach (1892–1945) is generally considered one of the 20th-century’s most important
and influential mathematicians and was an original member of the Lwów School of Mathematics,
a group of Polish mathematicians who worked in the interwar period in Lwów, Poland (since 1945
Lviv, Ukraine). Stanis law Ulam (1909–1984) devised the “Monte-Carlo method” widely used in
solving mathematical problems using statistical sampling. John von Neumann (1903–1957) was
regarded as having perhaps the widest coverage of any mathematician of his time and was said to
have been “the last representative of the great mathematicians who were equally at home in both
pure and applied mathematics”.
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Abstract

A “perfect number” is a positive integer that is equal to the sum of its positive divisors, excluding
the number itself. It is not known when perfect numbers were first studied and indeed the first
studies may go back to the earliest times when numbers first aroused curiosity. This definition
is ancient, appearing as early as Euclid’s Elements (VII.22). Euclid also proved a formation rule
(IX.36) whereby q(q+ 1)/2 is an even perfect number whenever q is a prime of the form 2p− 1 for
positive integer p, which is now called a “Mersenne prime”. Two millennia later, Leonhard Euler
proved that all even perfect numbers are of this form. This is now known as the Euclid–Euler
theorem. The stamps displayed here, from left to right, depict Euclid, Euler and Mersenne, and
were issued by Ukraine (2019), Guinea-Bissau (2009) and Ukraine (2022).
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This paper is dedicated to Professor Götz Trenkler on his 80th birthday.

Abstract

We first present the Moore-Penrose, Drazin, core and some generalised core inverses, and
then use the matrix differential calculus to establish matrix derivatives for some of the important
matrix functions involving these gereralised inverses. We include the generalised inverses of the
Kronecker product of two matrices as well.

Keywords: Moore-Penrose inverse, Drazin inverse, group inverse, core inverse, generalised
core inverse, matrix differential calculus, Kronecker product

1 Introduction
On the occasion of Professor Götz Trenkler’s 80th birthday, we would like to honour his ex-

ceptional contributions to the field of mathematics and statistics. His work encompasses a broad
range of topics, including non-negative definite matrices, Löwner ordering, matrix inequalities,
partitioned matrices, matrix and cross products, the Moore-Penrose inverse, core and generalized
core inverses of matrices and operators, the ordinary least squares estimator, best linear unbiased
estimator, estimators in restricted regression models, biased estimators, mean square errors, and
other topics with applications ranging from mathematics, econometrics to nonparametric statis-
tics. Through his expertise, Professor Trenkler has inspired and influenced numerous researchers
within our community, enriching our collective knowledge.

With deep gratitude and respect, we proudly dedicate this paper to Professor Götz Trenkler
in celebration of his 80th birthday and his outstanding achievements in academia and life. The
focus of this paper lies on several matrix functions involving some matrix inverses, a subject
that Professor Trenkler has devoted considerable time and expertise to studying throughout his
illustrious career.

*Corresponding author: S. Liu. Email: shuangzhe.liu@canberra.edu.au
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Solvability of a system of linear equations –
an approach based on the generalized inverses determined

by the Penrose equations1

Oskar Maria Baksalary

Faculty of Physics, Adam Mickiewicz University,
ul. Uniwersytetu Poznańskiego 2, PL 61-614 Poznań, Poland

Abstract. The paper aims to play an expository role, providing a tailored introduction to the
theory of generalized inverses determined by the so-called Penrose equations, with the Moore–
Penrose inverse as the jewel in the crown. A particular attention is paid to the applications of
the inverses to the solvability of a system of linear equations, which covers inter alia the least
squares method. Various links between the generalized inverses and the theory of projectors are
also discussed, indicating issues which are relevant from the point of view of physics. In fact,
the paper can be viewed as a sequel of [Baksalary, O.M. and Trenkler, G., The Moore–Penrose
inverse – a hundred years on a frontline of physics research, The European Physical Journal H,
46 (2021) 9], the paper prepared to celebrate the 100th anniversary of the first definition of the
Moore–Penrose inverse, which shades a spotlight on the role which the inverse plays in physics.

Most of the results given in the paper are known in the literature, though are scattered
among various sources. Some results were so far likely not explicitly expressed in the literature,
but could be derived by combining different known facts (again distributed among diverse
sources). It is believed that the article will prove to provide a compendious, though fully-
fledged guidance to the researchers utilizing the least squares methods as well as to those
looking for tools rooted in the theory of matrix generalized inverses to cope with the problems
they face in their investigations.

Keywords: applications of generalized inverses; Moore–Penrose inverse; least squares method;
matrix equations

E-mail address: OBaksalary@gmail.com
ORCID: 0000-0002-5172-2068

1The paper is dedicated to Professor Götz Trenkler on the occasion of his eighties birth-
day on July 14, 2023. I am sincerely thankful for over twenty years of our friendship and
collaboration! Many happy returns, my Best Man!
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Abstract: In this paper we introduce a class of clockwise and counter-clockwise trans-

formations of square matrices and discuss their application to Graeco-Latin squares, magic

squares and the solution of a family of generalised Sudoku problems.

Key words: Graeco-Latin square; Latin square; magic square; permutation matrix;

Sudoku problem.

1. Introduction

Given twon × n matrices with typical elements (f, g) and (i, j) respectively, then we

may associate the n2 cells of the n× n source matrix with the n2 cells of the n× n target

matrix to obtain a one-to-one transformation which carries the (f, g)th element of the

source matrix into the (i, j)th element of the target matrix. We represent the effect

of this transformation by inserting the symbol (i, j) in the (f, g)th cell of a third n × n

matrix which serves to represent the transformation. In other words, for i, j = 1, 2, ..., n,

we have to allocate the n2 symbols (i, j) to the n2 elements of a third n× n matrix

Let A be an n × n matrix and let h be an integer in the range 1 ≤ h ≤ n, then

we may define the hth row of A by {ahj j = 1, 2, ..., n}, the hth column of A by

{aih i = 1, 2, ..., n}, the hth primary cyclic-diagonal of A by {aij : i = h + j (

mod n), j = 1, 2, ..., n}, and the hth secondary cyclic-diagonal of A by {aij : i =

h + 1 − j ( mod n), j = 1, 2, ..., n}. In each case, the nth primary or secondary

cyclic-diagonal of A may be named the principal primary or secondary diagonal as they

are also the familiar non-cyclical diagonals of the matrix. [Henceforth we shall suppress

the ‘cyclic’ prefix.]

For example, omitting the matrix identifier a in the 3×3 case, we find that the element-

indicators in the first, second and third rows are {(1, 1), (1, 2), (1, 3)}, {(2, 1), (2, 2), (2, 3)},
{(3, 1), (3, 2), (3, 3)}, the indicators in The first second and third columns are {(1, 1), (2, 1), (3, 1)},
{(1, 2), (2, 2), (3, 2)}, {(1, 3), (2, 3), (3, 3)}, the indicators in The first, second and third pri-

mary diagonals are {(1, 2), (2, 3), (3, 1)}, {(1, 3), (2, 1), (3, 2)}, {(1, 1), (2, 2), (3, 3)}, and

the indicators in the first second and third secondary diagonals are {(1, 1), (2, 3), (3, 2)},
{(1, 2), (2, 1), (3, 3)}, {(1, 3), (2, 2), (3, 1)}.

The typical square matrix have six classes of transformation of particular interest to us
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in this paper: a: rotating the given matrix about its middlemost row or column carries

rows into rows and columns into columns but primary diagonals into secondary diagonals

and vice versa. b: rotating the given matrix about its principal primary or secondary

diagonal carries primary diagonals into primary diagonals and secondary diagonals into

secondary diagonals but rows into columns and vice versa. c: rotating the given ma-

trix about its middlemost row or column and about its principal primary or secondary

diagonal carries rows into columns and vice versa and primary diagonals into secondary

diagonals and vice versa. d: What we shall call a clockwise transformation carries rows

into primary diagonals, primary diagonals into columns, columns into secondary diag-

onals, and secondary diagonals into rows. e: What we shall call a counter-clockwise

transformation carries rows into secondary diagonals, secondary diagonals into columns,

columns into primary diagonals, and primary diagonals into rows. f: Two applications

of a clockwise or a counter-clockwise transformation will carry rows into columns and vice

versa and primary diagonals into secondary diagonals and vice versa. These results are

summarised in the following table where R,Q, P, and S signify rows, columns, primary

diagonals and secondary diagonals respectively:

Table 1

Transformation R Q P S
mid row/column R Q S P
Principal P/S Diagonal Q R P S
R/Q + P/S Combination Q R S P

Clockwise P S Q R
Counter Clockwise S P R Q
Double Clockwise Q R S P

Note that an application of the double transformations (c) or (f) with the single

transformations (d) or (e) will convert a clockwise transformation (d) into a counter-

clockwise transformation (e) and vice versa, see Section 5 below.

If n = 2m + 1 is odd then each of the n rows of A has a single intersection with each

of its n columns, each of its n primary diagonals, and each of its n secondary diagonals.

Similarly, each of the n primary diagonals of Ahas a single intersection with each of its

n secondary diagonals, each of its n rows and each of its n columns, and so on. [In this

context, the principal diagonals may be associated with the middlemost value h = m + 1

of h by replacing i = h+j by i = m+h+j and i = h+1−j by i = h−m−j in the above

definitions of the hth primary and secondary cyclic-diagonals where m = (n− 1)/2.]
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In this paper, we shall restrict our attention to odd values of n, and shall seek to

identify a family of ”counter-clockwise” transformations which carries each column into a

primary diagonal, each primary diagonal into a row, each row into a secondary diagonal,

and each secondary diagonal into a column. [The corresponding reverse ”clockwise”

transformation will be discussed in Section 5 below.

For this purpose,we seek a rule for determining an n×n matrix of quadruplets in which

four distinct sequences of values 1, 2, ..., n are assigned to the n rows, to the n columns, to

the n primary diagonals, and to the n secondary diagonals of the target matrix. In this

context, a typical quadruplet takes the form (ijkl) where the First element i is constant

on each primary diagonal, the Second element j is constant on each secondary Diagonal,

the Third Element k is constant on each column, and the Fourth Element l is constant

on each row of the target matrix, where, for consistency, the parameters i, j, k and l must

satisfy the conditions k = j − i ( mod n) and l = i + j ( mod n), whence 2i = l − k (

mod n) and 2j = k + l ( mod n). Given any three entities from the n rows, the n

columns, the n primary diagonals, and the n secondary diagonals, not all from the same

class (so that there is at least one intersection) and not all meeting in a single point (so

that there are at least two intersections), and assuming that the first two choices are

from distinct classes, we may assign any one of nvalues to the parameter associated with

the first choice, any one of n values to the parameter associated with the second choice,

and any one of n − 1 values to the parameter associated with the third choice. (Note

that the value associated with the third choice must be distinct from that associated with

the member of the third class implied by the intersection of the first two choices). It

is readily apparent from the examples given below that we may obtain a full set of n2

quadruplets from any such selection. Thus, somewhat surprisingly, we find that we only

have three degrees of freedom in this problem whatever the value of n. and hence that

we have n2(n − 1) possible arrangements of the elements in an n × ncounter-clockwise

transformation matrix.

2. The 3× 3 Case

As a specific example of this procedure, in the 3×3 case, we may set the fourth element

of all quadruplets in the second row equal to 2 and the third element of all quadruplets

in the second column equal to 3. These lines intersect in the middlemost cell and we

may identify the corresponding quadruplet as (1132). we may thus associate the value 1

with the principal primary diagonal through this cell and the value 1 with the principal

secondary diagonal through the same cell.

Altermatively, we could have set the first element of all quadruplets on the principal
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primary diagonal equal to 1 and also the second element of all quadruplets on the principal

secondary diagonal equal to 1. Again we have to associate the quadruplet (1132) with

the middlemost cell, and thus the value 2 with the second row and 3 with the second

column.

In either case, we have the partially completed matrix:




(1 ∗ ∗∗) (∗ ∗ 3∗) (∗1 ∗ ∗)
(∗ ∗ ∗2) (1132) (∗ ∗ ∗2)
(∗1 ∗ ∗) (∗ ∗ 3∗) (1 ∗ ∗∗)




We now have to associate any unused value with any row, column, primary diagonal

or secondary diagonal not already in use. for example, we may associate the value 3 with

the fourth element of all quadruplets in the first row (and the unused value 1 with the

fourth element of all quadruplets in the third row). We then have:




(1 ∗ ∗3) (∗ ∗ 33) (∗1 ∗ 3)
(∗ ∗ ∗2) (1132) (∗ ∗ ∗2)
(∗1 ∗ 1) (∗ ∗ 31) (1 ∗ ∗1)




whence




(1213) (3333) (2123)
(2312) (1132) (3222)
(3111) (2231) (1321)




In fact, the first two parameters suffice to identify any quadruplet and we delete the

third and fourth element of each quadruplet to obtain the required transformation:




(1, 2) (3, 3) (2, 1)
(2, 3) (1, 1) (3, 2)
(3, 1) (2, 2) (1, 3)



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Examining in turn the columns, the primary diagonals, the rows, and the secondary

diagonals of this matrix, we find that the transformation represented by this matrix

carries The columns {(1, 1), (2, 1), (3, 1)}, {(1, 2), (2, 2), (3, 2)}, {(1, 3), (2, 3), (3, 3)} into

the primary diagonals {(1, 2), (2, 3), (3, 1)}, {(3, 3), (1, 1), (2, 2)}, {(2, 1), (3, 2), (1, 3)}.
It carries the primary diagonals {(1, 1), (2, 2), (3, 3)}, {(1, 2), (2, 3), (3, 1)}, {(1, 3), (2, 1), (3, 2)}

into the rows {(1, 2), (1, 1), (1, 3)}, {(3, 3), (3, 2), (3, 1)}, {(2, 1), (2, 3), (2, 2)}. it carries

the rows {(1, 1), (1, 2), (1, 3)}, {(2, 1), (2, 2), (2, 3)}, {(3, 1), (3, 2), (3, 3)} into the

secondary diagonals {(1, 2), (3, 3), (2, 1)}, {(2, 3), (1, 1), (3, 2)} {(3, 1), (2, 2), (1, 3)}.
And it carries the secondary diagonals {(1, 1), (2, 3), (3, 2)}, {(1, 2) , (2, 1) , (3, 3)},
{(1, 3), (2, 2), (3, 1)} into the columns {(1, 2), (3, 2), (2, 2)}, {(3, 3), (2, 3), (1, 3)}, {(2,

1), (1, 1),(3, 1)}.
This transformation clearly exhibits a fixed point at (3, 1) combined with an eight

period cycle that carries (1, 1) into (1, 2), (1, 2) into (3, 3), (3, 3) into (1, 3), (1, 3) into

(2, 1), (2, 1) into (2, 3), (2, 3) into (3, 2), (3, 2) into (2, 2), (2, 2) into (1, 1), and so on.

Thus, whatever the starting value, it is clear that eight applications of this transformation

carries every element back to its original position. Moreover, on examining the second

and fourth successors in this sequence, we find that two applications of this transformation

Carries Rows 1, 2 and 3 into columns 3, 2 and 1, and columns 1, 2 and 3 into rows 3, 1

and 2whilst four applications Carries Rows 1, 2 and 3 into Rows 2, 1 and 3, and columns

1, 2 and 3 into Columns 1, 3 and 2 in a two period block cycle, see Table 2.

Table 2

(1, 1) (1, 2) (3, 3) (1, 3) (2, 1)
(1, 2) (3, 3) (1, 3) (2, 1) (2, 3)
(1, 3) (2, 1) (2, 3) (3, 2) (2, 2)
(2, 1) (2, 3) (3, 2) (2, 2) (1, 1)
(2, 2) (1, 1) (1, 2) (3, 3) (1, 3)
(2, 3) (3, 2) (2, 2) (1, 1) (1, 2)
(3, 1) (3, 1) (3, 1) (3, 1) (3, 1)
(3, 2) (2, 2) (1, 1) (1, 2) (3, 3)
(3, 3) (1, 3) (2, 1) (2, 3) (3, 2)

3. A Simple General Procedure

Rather than applying an ad hoc procedure to each new problem as it arises, Farebrother

(2007-08) has suggested the following simple procedure for generating a transformation

which carries each column into a primary diagonal, each primary diagonal into a row,

each row into a secondary diagonal, and each secondary diagonal into a column when n

is odd.
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Given n odd and an empty n×n matrix, we suppose that the transformation carries a

typical element (associated with the quadruplet (ijkl)) into the ith row, the jth column,

the kth primary diagonal, and the lth secondary diagonal, where k = j − i mod n

and l = i + j mod n and hence 2i = l − k mod n and 2j = k + l mod n. A

specific transformation may now be obtained by attaching consistent values to any three

rows, columns, primary diagonals or secondary diagonals that intersect in two or three

cells. In particular, we note the following simple, if somewhat inefficient, procedure.

Attaching any one of n values to the fourth element of all quadruplets in the first row

and any one of n values to the third element of all quadruplets in the first column. Then

the intersection of the first row with the first column at (1, 1) identifies the value of the

first element of all quadruplets in the principal primary diagonal which passes through

the points (1, 1), (2, 2) and (n, n). Attaching any one of n − 1 values to the fourth

element of all quadruplets in the last row, then the intersection between this row and

the principal primary diagonal at (n, n) identifies the value of the third element of all

quadruplets in the last column. Now the intersection between the nth row and the first

column at (n, 1) identifies the value of the first element of all quadruplets in the primary

diagonal that passes through this point and through (1, 2), (2, 3), and (n − 1, n) whilst

the intersection between the first row and the nth column at (1, n−1) identifies the value

of all quadruplets in the primary diagonal that passes through this point and through

(2, 1), (3, 2), and (n, n− 1). The intersections between these two primary diagonals and

the first and last rows and columns at the points (1, 2), (n− 1, n), (2, 1), and (n, n− 1)

identifies the values to be associated with the second and (n − 1)th rows and columns.

Missing the opportunity of defining four more primary diagonals at this stage, we simply

note that the intersections between the two cyclic-diagonals immediately above and below

the principal primary diagonal and the second and (n − 1)th rows and columns define

the values to be associated with the third and (n− 2)th rows and columns; and so on to

completion.

4. The 5× 5 case

In order to obtain a sufficiently explicit example of this general procedure, we consider

the case of a 5×5 matrix. Setting n = 5, and arbitrarily setting the fourth element of all

quadruplets in the first row of the empty 5×5 matrix equal to 4, and the third element of

all quadruplets in the first column equal to 2, we find that the principal primary diagonal

is associated with a value of 1 = (4− 2)/2 and set the first element of all quadruplets in

this diagonal equal to 1. Again, arbitrarily setting the fourth element of all quadruplets

in the fifth row equal to 5, we find that the last column is associated with a value of
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3 = 5− 2, and we have to set the third element of all quadruplets in this column equal to

3. In this way we obtain the matrix:




(1 ∗ 24) (∗ ∗ ∗4) (∗ ∗ ∗4) (∗ ∗ ∗4) (∗ ∗ 34)
(∗ ∗ 2∗) (1 ∗ ∗∗) (∗ ∗ ∗∗) (∗ ∗ ∗∗) (∗ ∗ 3∗)
(∗ ∗ 2∗) (∗ ∗ ∗∗) (1 ∗ ∗∗) (∗ ∗ ∗∗) (∗ ∗ 3∗)
(∗ ∗ 2∗) (∗ ∗ ∗∗) (∗ ∗ ∗∗) (1 ∗ ∗∗) (∗ ∗ 3∗)
(∗ ∗ 25) (∗ ∗ ∗5) (∗ ∗ ∗5) (∗ ∗ ∗5) (1 ∗ 35)




From this matrix we may establish the values associated with the first primary diag-

onals immediately above and below the principal primary diagonal, and hence the values

associated with the second and fourth rows and the second and fourth columns, we thus

have:




(1 ∗ 24) (4 ∗ 14) (∗ ∗ 44) (∗ ∗ ∗4) (3 ∗ 34)
(3 ∗ 23) (1 ∗ 13) (4 ∗ ∗3) (∗ ∗ 43) (∗ ∗ 33)
(∗ ∗ 2∗) (3 ∗ 1∗) (1 ∗ ∗∗) (4 ∗ 4∗) (∗ ∗ 3∗)
(∗ ∗ 21) (∗ ∗ 11) (3 ∗ ∗1) (1 ∗ 41) (4 ∗ 31)
(4 ∗ 25) (∗ ∗ 15) (∗ ∗ ∗5) (3 ∗ 45) (1 ∗ 35)




From which it is easy to obtain the full matrix:




(1324) (4514) (2254) (5444) (3134)
(3523) (1213) (4453) (2143) (5333)
(5222) (3412) (1152) (4342) (2532)
(2421) (5111) (3351) (1541) (4231)
(4125) (2315) (5555) (3245) (1435)




Once again, the first two elements suffice to identify the cells of this matrix, and we

delete the third and fourth elements to obtain:




(1, 3) (4, 5) (2, 2) (5, 4) (3, 1)
(3, 5) (1, 2) (4, 4) (2, 1) (5, 3)
(5, 2) (3, 4) (1, 1) (4, 3) (2, 5)
(2, 4) (5, 1) (3, 3) (1, 5) (4, 2)
(4, 1) (2, 3) (5, 5) (3, 2) (1, 4)



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Clearly, the transformation represented by this matrix carries each column into a

primary diagonal, each primary diagonal into a row, each row into a secondary diagonal,

and each secondary diagonal into a column. This transformation clearly exhibits a

twenty-period cycle that carries (1, 1) into (1, 3), (1, 3) into (2, 2), (2, 2) into (1, 2), (1, 2)

into (4, 5), (4, 5) into (4, 2), (4, 2) into (5, 1), (5, 1) into (4, 1), (4, 1) into (2, 4), (2, 4)

into (2, 1), (2, 1) into (3, 5), (3, 5) into (2, 5), (2, 5) into (5, 3), (5, 3) into (5, 5), (5, 5)

into (1, 4), (1, 4) into (5, 4), (5, 4) into (3, 2), (3, 2) into (3, 4), (3, 4) into (4, 3), (4, 3)

into (3, 3), (3, 3) into (1, 1). It also exhibits a five period cycle that carries (4, 4) into

(1, 5), (1, 5) into (3, 1), (3, 1) into (5, 2), (5, 2) into (2, 3), (2, 3) into (4, 4). However,

whatever the starting value, it is clear that twenty applications of this transformation

carries every element back to its original position.

Further, on examining fourth successors in this sequence, we find that four applications

of this transformation carries rows 1, 2, 3, 4 and 5 into rows 4, 5, 1, 2 and 3 and columns

1, 2, 3, 4 and 5 into columns 5, 1, 2, 3 and 4 in a five period block cycle.

here we have shown implicitly that there are n2(n−1) transformations of the required

form. There are also n2(n−1) reverse transformations that carry columns into secondary

diagonals, secondary diagonals into rows, rows into primary diagonals, and primary diag-

onals into columns.

5. Rotational solutions

Having obtained a counter-clockwise transformation which carries columns into pri-

mary diagonals, primary diagonals into rows, rows into secondary diagonals, and sec-

ondary diagonals into columns, we may readily obtain the reverse of this transformation

by reversing each of the individual cell-to-cell operations before arranging the results in

an n× n matrix. Applying this idea to the transformation in Section 2, we find that the

corresponding reverse transformation carries (1, 1) into (2, 2), (1, 2) into (1, 1), (1, 3) into

(3, 3), (2, 1) into (1, 3), (2, 2) into (3, 2), (2, 3) into (2, 1), (3, 1) into (3, 1), (3, 2) into

(2, 3), and (3, 3) into (1, 2). Thus, the reverse of the transformation described in section

2 may be represented by the 3× 3 matrix:




(2, 2) (1, 1) (3, 3)
(1, 3) (3, 2) (2, 1)
(3, 1) (2, 3) (1, 2)




[Note that I have use the term ‘reverse’ in this context as the more usual ‘inverse’ might

suggest that a matrix inverse is intended.]
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On the other hand, if we are not concerned with obtaining the reverse of a specific

counter-clockwise transformation but only a clockwise transformation that carries rows

into primary diagonals, primary diagonals into columns, columns into secondary diagonals,

and secondary diagonals into rows, then we may do so by reversing the order of the rows

or columns, and transposing the resulting matrix about its principal primary or secondary

diagonal or vice versa. As indicated in Table 1, Reversing the order of the rows or columns

automatically interchanges the roles of the first and second indicators (relating to the

primary and secondary diagonals of the target matrix) and the transposition of the matrix

about either principal diagonal automatically interchanges the roles of the third and fourth

indicators (relating to the rows and columns of the target matrix). [Alternatively, two

applications of a clockwise or a counter-clockwise transformation interchanges the roles

of both pairs of operators.]

To illustrate this point, we again consider the 3 × 3 transformation matrix identified

in Section 2:




(1, 2) (3, 3) (2, 1)
(2, 3) (1, 1) (3, 2)
(3, 1) (2, 2) (1, 3)




Reversing the order of the rows, we have:




(3, 1) (2, 2) (1, 3)
(2, 3) (1, 1) (3, 2)
(1, 2) (3, 3) (2, 1)




Then transposing this matrix about its principal primary diagonal, we have:




(3, 1) (2, 3) (1, 2)
(2, 2) (1, 1) (3, 3)
(1, 3) (3, 2) (2, 1)




As required, this double operation produces a clockwise transformation that carries

rows into primary diagonals, primary diagonals into columns, columns into secondary

diagonals, and secondary diagonals into rows. Note that the fixed point of this transfor-

mation has moved to the (3, 2) position.
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Alternatively, we can generate an arbitrary clockwise transformation by means of three

applications of the counter-clockwise transformation of Section 2. As indicated in Table

2, this procedure yields a clockwise transformation which carries (1, 1) into (1, 3), (1, 2)

into (2, 1), (1, 3) into (3, 2), (2, 1) into (2, 2), (2, 2) into (3, 3), (2, 3) into (1, 1), (3, 1)

into (3, 1), (3, 2) into (1, 2), and (3, 3) into (2, 3), and hence the transformation matrix:




(1, 3) (2, 1) (3, 2)
(2, 2) (3, 3) (1, 1)
(3, 1) (1, 2) (2, 3)




6. Application to Graeco-Latin Squares

To identify a Graeco-Latin square generated by the 5 × 5 Transformation matrix

of Section 4, we replace the numerical row indicators 1, 2, 3, 4, 5 by their alphabetical

equivalents A,B,C,D,E (in some order), and obtain:




A3 D5 B2 E4 C1
C5 A2 D4 B1 E3
E2 C4 A1 D3 B5
B4 E1 C3 A5 D2
D1 B3 E5 C2 A4




which contains all twenty-five combinations of the five letters and the five numerals. In

the present context, this matrix would probably be called an alphanumeric square. But,

for historical reasons, it is more usually known as a Graeco-Latin square.

Associated with each Graeco-Latin square we have two Latin squares with the same

dimensions, the first is obtained by deleting all 25 numerals from the above Graeco-Latin

square and the second by deleting all 25 letters. In this context, the given Graeco-Latin

square may be regarded as being formed by superimposing one of these Latin squares

on the other in a symbolic Hadamard product. Now, each row and each column of the

alphabetical Latin square contains one of each letter; each row and each column of the

numerical Latin square contains one of each numeral; and hence each row and each column

of the Graeco-Latin square formed by superimposing one of these Latin squares on the

other contains one of each letter and one of each numeral.

Moreover, we are not restricted to the Graeco-Latin square that arises naturally from

the given n × n transformation as we may readily obtain 2(n!)2 variants of our origi-

nal Graeco-Latin square by permuting the order of its rows, permuting the order of its

columns, and transposing the result about its principal primary or secondary diagonal.
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Thus, if it is thought inappropriate that the common letters in the above Graeco-Latin

square should lie on its five primary diagonals and that the common numerals should lie

on its five secondary diagonals then we can easily replace the ‘bishop’s move’ structure of

this Graeco-Latin square by a ‘knights’s move’ structure by interleaving the last two rows

of the matrix of Section 4 into its first three rows in the order 1, 4, 2, 5, 3 to obtain the

‘knight’s move’ transformation matrix:




(1, 3) (4, 5) (2, 2) (5, 4) (3, 1)
(2, 4) (5, 1) (3, 3) (1, 5) (4, 2)
(3, 5) (1, 2) (4, 4) (2, 1) (5, 3)
(4, 1) (2, 3) (5, 5) (3, 2) (1, 4)
(5, 2) (3, 4) (1, 1) (4, 3) (2, 5)




before replacing the numerical row-indicators by letters to obtain the corresponding

Graeco-Latin square:




A3 D5 B2 E4 C1
B4 E1 C3 A5 D2
C5 A2 D4 B1 E3
D1 B3 E5 C2 A4
E2 C4 A1 D3 B5




Note that each row, each column, each primary diagonal and each secondary diagonal of

this (Knut Vik) variant of our basic Graeco-Latin square still contains one of each letter

and one of each numeral.

n×n Latin and Graeco-Latin squares are primarily employed in the design of statistical

experiments. but they also serve as the source of a class of n × n magic square defined

by assigning the additive values 0, n, ..., n(n− 1) (in some order) to one set of symbols

and the values 1, 2, ..., n to the other. In particular, on setting A = 0, B = 5, C =

10, D = 15, and E = 20 in our 5 × 5 ‘knight’s move’ Graeco-Latin square, we have the

magic square:




3 20 7 24 11
9 21 13 5 17
15 2 19 6 23
16 8 25 12 4
22 14 1 18 10



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which shows that the numbers 1, 2, ..., 25 can be arranged in a 5 × 5 array in such a

way that the elements in each of five rows, in each of five columns, in each of five primary

diagonals, and in each of five secondary diagonals sum to 65, see Farebrother (2009).

7. A Simple Algebraic Procedure for Knut Vik Graeco-Latin Squares

Readers will be interested to learn that the above 5 × 5 knight’s move matrix may

be generalised to yield a family of n × n Graeco-Latin squares with special properties

(Knut Vik designs) provided only that n ≥ 5 is a positive integer that is not divisible

by 2 or by 3. To see this, let h and k be arbitrary integers in the range 1 ≤ h, k ≤ n

and let m be an integer in the range 2 ≤ m ≤ n − 2 such that the three functions

xt = t(m − 1) (modn), yt = tm (modn) and zt = t(m + 1) (modn) each take the values

0, 1, ..., n − 1 in some order as t takes the values 0, 1, ..., n − 1. then, our general

algebraic Knut Vik square is defined by supposing that the (i, j)th cell of the array

contains an ordered pair with first element i + m(h − j) (mod n) and second element

i + m(j − k) (mod n).

Clearly, the parameters h and k serve to identify the columns j = h and j = k in which

the first and second elements in this (i, j)th cell take the value i (mod n). Moreover, for

all values of i, j, the value of the first (second) element remains the same if i is increased

by f = gm (mod n) at the same time as j is increased (decreased) by g = fp (mod n)

where f and g are integers in the range 1 ≤ f, g ≤ n− 1 and p is an integer in the same

range such that mp = 1 (mod n). In this context, it is clear that the 5× 5 knight’s move

matrix given above corresponds to the values n = 5, m = 2, p = 3, h = 1 and k = 5.

Further, it may readily be established that the n×n arrays determined by this algebraic

procedure have the property that the set of pairs in each row, each column, each primary

cyclic-diagonal and each secondary cyclic-diagonal contain one element of each value in

the first position and one element of each value in the second position. In addition, no

ordered pair of elements is repeated in any two cells of the array.

8. Application to Generalised Sudoku problems

Let e1, e2, ..., e9 be a set of nine distinct symbols, then the standard 9 × 9 Sudoku

problem concerns the possibility of inserting nine copies of each of these nine symbols into

a 9 × 9 array in such a way that the nine symbols in each of nine rows are distinct; the

nine symbols in each of nine columns are distinct; and the nine symbols in each of nine

contiguous 3× 3 submatrices are distinct.

In the present section, we are concerned with a generalisation of this standard problem

that requires that a further three (or seven) sets of conditions be satisfied. Namely, the

nine symbols in each of nine corresponding locations in the nine contiguous 3×3 matrices

12



are distinct; the nine symbols in the first, fourth and seventh 3×1 minicolumns of the first,

second and third 3×9 row-blocks are distinct; as are the nine symbols in the second, fifth

and eighth minicolumns and the nine symbols in the third, sixth and ninth minicolumns

of these row-blocks. Similarly, the nine symbols in the first, fourth and seventh 1 × 3

minirows of the first, second and third 9× 3 column-blockss are distinct; as are the nine

symbols in the second, fifth and eighth minirows and the nine symbols in the third, sixth

and ninth minirows of these column-blocks. Indeed, we shall have cause to mention

a further generalisation in which four more sets of conditions based on combinations of

primary and secondary minidiagonals are satisfied. These new sets of restrictions are

more conveniently expressed in the form of Hadamard products, as we shall now show:

Let Eij be a 3 × 3 matrix with unity in its ijth position and zeros elsewhere and let

F be a 3× 3 matrix of ones. Then we may define four sets of three 3× 3 matrices:

The set of 3× 3 minirow matrices R1 = E11 + E12 + E13, R2 = E21 + E22 + E23,

R3 = E31 + E32 + E33 :

R1 =




1 1 1
0 0 0
0 0 0


 R2 =




0 0 0
1 1 1
0 0 0


 R3 =




0 0 0
0 0 0
1 1 1




The set of 3× 3 minicolumn matrices Q1 = E11 + E21 + E31, Q2 = E12 + E22 + E32,

Q3 = E13 + E23 + E33 :

Q1 =




1 0 0
1 0 0
1 0 0


 Q2 =




0 1 0
0 1 0
0 1 0


 Q3 =




0 0 1
0 0 1
0 0 1




The set of 3×3 primary mini-diagonal matrices P1 = E11 + E22 + E33, P2 = E12 + E23 + E31,

P3 = E13 + E21 + E32 :

P1 =




1 0 0
0 1 0
0 0 1


 P2 =




0 1 0
0 0 1
1 0 0


 P3 =




0 0 1
1 0 0
0 1 0




And the set of 3×3 secondary mini-diagonal matrices S1 = E11 + E23 + E32, S2 = E12 + E21 + E33,

S3 = E13 + E22 + E31.
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S1 =




1 0 0
0 0 1
0 1 0


 S2 =




0 1 0
1 0 0
0 0 1


 S3 =




0 0 1
0 1 0
1 0 0




Taking Kronecker products within the sets {E11,F}, {E12,F}, ..., {E33,F}, and

within the sets {R1,R2,R3,Q1,Q2,Q3} and {P1,p2,P3,S1,S2,S3}, we have (Hadamard)

masks for the nine 3 × 3 contiguous submatrices defined by Eij ⊗ F; masks for the nine

location matrices defined by F ⊗ Eij; masks for the nine long row matrices defined by

Ri ⊗ Rj; masks for the nine long column matrices defined by Qi ⊗ Qj; masks for the

nine minirow ⊗ minicolumn (or broken column) matrices defined by Ri ⊗Qj; masks for

the nine minicolumn ⊗ minirow ( or broken row) matrices defined by Qi ⊗Rj; masksfor

the nine primary ⊗ primary mini-diagonal matrices defined by Pi ⊗ Pj; masks for the

nine secondary ⊗ secondary mini-diagonal matrices defined by Si⊗Sj; masks for the nine

primary ⊗ secondary mini-diagonal matrices defined by Pi ⊗ Sj; and masks for the nine

secondary ⊗ primary mini-diagonal matrices defined by Si ⊗Pj.

The first six of these ten sets of nine masks were implicitly employed by Bailey,

Cameron and Connelly (2008, p.390) in their definition of a 9 × 9 ‘symmetric’ Sudoku

matrix which requires that the nine nonzero symbols of the Hadamard product of each

of these 54 matrices with the 9 × 9 candidate matrix should comprise a full set of the

symbols e1, e2, ..., e9.

Indeed, it may readily be established that this typical matrix also satisfies the condi-

tions generated by the remaining four sets of nine Hadamard masks. Whence we may

deduce that all 9× 9 Sudoku matrices which can be obtained from this matrix by renum-

bering the symbols, by transposition or by pre-multiplication by a Kronecker product of

two matrices from the set of 3× 3 permutation matrices {P1, P2, P3, S1, S2, S3} and

post-multiplication by a second Kronecker product of the same type will yield another

Sudoku matrix with the same properties. Moreover,it is immediately apparent that these

two sets of conditions are distinct as each of the first 54 masks is of rank one whilst each

of the last 36 masks is nonsingular.

9. Solution of Generalised Sudoku Problems

A family of general solutions to the problem of Section 8 is easily found: Given any

arrangement of the nine symbolss e1, e2, ..., e9, we define the 3× 3 seed matrix:
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B =




e1 e2 e3
e4 e5 e6
e7 e8 e9




In this context, the values of i and j in a typical element (i, j) from our chosen 3× 3

clockwise or counter-clockwise transformation matrix serve to define the row and column

permutations required to bring the h = 3(i − 1) + jth element of B into the upper left

corner of the transformed matrix Mh = Pi−1
1 BPj−1

2 . Further, on substituting the 3 × 3

matrix Mh for the symbol (i, j) in our selective 3× 3 transformation matrix from Section

2, we have the 9× 9 matrix:




M2 M9 M4

M6 M1 M8

M7 M5 M3




or

e2 e3 e1 e9 e7 e8 e4 e5 e6
e5 e6 e4 e3 e1 e2 e7 e8 e9
e8 e9 e7 e6 e4 e5 e1 e2 e3
e6 e4 e5 e1 e2 e3 e8 e9 e7
e9 e7 e8 e4 e5 e6 e2 e3 e1
e3 e1 e2 e7 e8 e9 e5 e6 e4
e7 e8 e9 e5 e6 e4 e3 e1 e2
e1 e2 e3 e8 e9 e7 e6 e4 e5
e4 e5 e6 e2 e3 e1 e9 e7 e8

It may readily be established that this 9× 9 matrix, due to Farebrother (2006-07, p.30),

satisfies all ten sets of conditions defining the generalised Sudoku problem of the previous

Section.

Additional solutions to this problem may readily be obtained by making an alternative

choice of a 3× 3 transformation matrix A and/or by allocating the nine given symbols to

the seed matrix B in a different order. For example, we may obtain a variant of the above

general solution by replacing B by its transpose and the counter-clockwise transformation

from Section 2 by the first arbitrary clockwise transformation from Section 5. Then, on
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setting e1 = 1, e2 = 5, e3 = 9, e4 = 6, e5 = 7, e6 = 2, e7 = 8, e8 = 3, e9 = 4, we

have the 9×9 typical Sudoku Latin square given by Bailey, Cameron and Connelly (2008,

p.391):

8 1 6 2 4 9 5 7 3
3 5 7 6 8 1 9 2 4
4 9 2 7 3 5 1 6 8
7 3 5 1 6 8 4 9 2
2 4 9 5 7 3 8 1 6
6 8 1 9 2 4 3 5 7
9 2 4 3 5 7 6 8 1
1 6 8 4 9 2 7 3 5
5 7 3 8 1 6 2 4 9

Bailey, Cameron and Connelly (2008, p.390) have shown that there are just two equiv-

alence classes of 9× 9 Sudoku matrices, where

”... two Sudoku solutions are equivalent if one can be obtained

from the other by a combination of row and column permuta-

tions (and possibly transposition) which preserve all the relevant

partitions, and re-numbering of the symbols.”

For instance, Bailey, Cameron and Connelly’s (2008, p.391) typical matrix can be

obtained from a particular case of Farebrother’s general solution by interchanging its first

three rows with its last three rows and transposing the result about its principal primary

diagonal

Besides the ten sets of nine conditions outlined in Section 7, these two general matrices

have the property that they are ‘orthogonal’ to their transposes in the sense that the

corresponding Graeco-Latin squares comprising eighty-one distinct combinations of nine

letters with nine numerals may readily be obtained by superimposing the above matrices

in numerical form on their transposes in alphabetical form, see Farebrother and Styan

(2008) for details.
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