One way to get some understanding on the relations between equations and their solutions over complex numbers is to study the projection

(an equation, its solutions) \mapsto (an equation)

over the relevant space of equations. When the latter projection is a covering, we enter the realm of Galois theory. Consider for instance the space of polynomials $f(x) = c_0 + c_1 x + \cdots + c_d x^d$ having *d* distinct roots in \mathbb{C} . The fundamental theorem of algebra ensures that we can permute the roots of f(x) in any possible way by traveling along loops in the space of coefficients c_0, \cdots, c_d . In other words, the Monodromy/Galois group of the covering

$$\{(f,x): f(x) = 0\} \mapsto f$$

is the full symmetric group. As a reminder of why these groups matter, recall how Galois himself expressed the solvability by radical of f as some algebraic property of its M/G group, namely the solvability of the group.

One very general context in which we can wonder about M/G groups is for square systems of polynomial equations

$$f_1(x_1,\cdots,x_n)=\cdots=f_n(x_1,\cdots,x_n)=0$$

where we decide in advance not only the degree of each f_j but its support, that is which monomials show up in f_j . There are some general statements in this context, but already for n = 2, the M/G groups of some systems $f_1 = f_2 = 0$ are not known.

In this talk, I would like to report on recent progress on the computation of these groups. In certain classes of examples, I would like to describe the M/G groups, explain why they are not full symmetric groups in general and, eventually, explain how we can compute them using considerations from toric/tropical geometry.