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Thermal Management (TM) thoughts and trends

The ECCV Platform

Latest Developments: Vapor-Compression Cycles (Refrigeration)
o Why? How?

e Thermodynamics of Refrigerants
o Component Models

Using the ECCV platform to evaluate the performance of a TMS
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TMS Development over time

@ TM systems are developed as an afterthought for conventional powertrains

e ... according to thermal management engineers
e TM control even more so

@ Complexity of TM systems have increased significantly in a short timespan
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Development over time
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Development over time

@ Tesla patent, 2012 2
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2 (Vincent Johnston. Thermal management system with dual mode coolant loops. U.S.-Patert US8336319B2, 2012)
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TMS Development over time

o Tesla patent, 20193
@ 16 modes (heating & cooling)
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3 (Nicholas Mancini. Optimal source electric vehicle heat pump with extreme temperature heating capability and
efficient thermal preconditioning. U.S. Patent US20190070924A1, 2018)
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The ECCV Platform Overview

o A BEV and FCH EV Simulator Powertrain Electrochemical @ Gas Exchange @ Thermal Control (O Mission
@ Three gOH'S. A platform for ... Fuel Cell Electric Machine
e ... extracting realistic boundary @I v £y v T,
Fe V) »
conditions. & L L
° ... developing predictive energy Compressor Energy Interaction Energy Interaction Chassis
management strategies. 0 T 0
e ... model-based design of energy v v
management systems o o =% o orw
> - 4 = II: i
. =
@ A platform where industry and 5 .
“oolant Pump Thermal Mass Thermal Mass Radiator

academia can collaborate without
sharing IP.
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The ECCV Platform Overview

@ Simple longitudinal vehicle
dynzI:mics. g Longitudinal Vehicle Model

@ Missions are defined by the altitude
profile and ambient conditions.

mv=Fr— Fy— F, — Fy(a)

o (or special circumstances, rest
stops, refueling etc.)

o A driver (controller) is required.

o Predictive speed control
significantly impacts performance.

@ f,is very large (m ~ 40 ton). But recuperable.

Electric Machine Gearbox Chassi Environment
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@ The DC-bus voltage is a balance of
suppliers and consumers.

@ The battery current is controlled to
maintain a bus voltage reference.

e DC/DC-converters are used to
connect the battery and bus.

@ The motor can be both a supplier
and consumer from the bus.

Battery Power Electronics

Max Johansson, LiU

The ECCV Platform Overview

Battery & DC-bus

CVbus = Isupplier —
Vpat = f(lbataxa T)

@ x: State of charge.

/consumer

Capacitor
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The ECCV Platform Overview

@ Some example simulation results using only the systems shown so far.
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Model Validation

@ Models and data from available literature.
o Varying degree of coverage.
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Figure: Battery cell voltage at T=25° C. Figure: Compressor flow versus pressure ratio.
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Refrigeration: Why?

o Cell temperature has significant impact on cycle life.#
@ No refrigeration = Battery temperature > ambient temperature
@ High battery temperature is a safety hazard
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Figure: Resistance degradation vs. cycle & temperature
Figure: Capacity degradation vs. cycle & temperature

4 (F. Leng, C. Tan, and M. Pecht. “Effect of Temperature on the Aging rate of Li lon Battery Operating above Room
Temperature”. In: Scientific Reports [2015]. DOI: 10.1038/srepl12967)
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https://doi.org/10.1038/srep12967

Refrigeration: How?

@ Using compression and expansion, we can manipulate a medium to condense at high temperatures
and evaporate at low temperatures.
@ Steady-state calculation on this system is undergraduate thermodynamics.
e ... transient modeling is not.
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Figure: Standard vapor-compression cycle.®

5 (Bahaa Saleh et al. “Performance Analysis and Working Fluid Selection for Single and Two Stages Vapor
Compression Refrigeration Cycles”. In: Processes 8.9 [2020]. 1ssN: 2227-9717. DOI: 10.3390/pr8091017. URL:
https://www.mdpi.com/2227-9717/8/9/1017)
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Multiparameter Equations of State

@ Most process modeling software rely on calls to REFPROP, CoolPROP, etc. for thermophysical
fluid properties.

@ The ECCV library is constrained to only standard Simulink.

@ ... So what does REFPROP do?

State Equation Explicit in Helmholtz Energy

a(p, T) = 30(/), T)+a'(p, T)

@ Density and Temperature are the natural variables.

@ For R1234yf®, the EOS has over 50 parameters (hence: multi).

@ Extreme precision.

@ With this equation, all thermodynamic properties can be calculated as partial derivatives.

@ Applicable in the single-phase region.

6 (Markus Richter, Mark O. McLinden, and Eric W. Lemmon. “Thermodynamic Properties of
2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p-d-T Measurements and an Equation of State”. In: Journal
of Chemical & Engineering Data [2011]. DOI: 10.1021/3je200369m)
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Pressure-Enthalpy Maps

@ We can generate maps by numerically
solving the state equation
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|
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@ Select T. 1|| 340
@ Solve g(p", T) = g(p/’ T) and E"DE . o <
p(p".T) = p(p', T) for p, p. I w
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iy i 260
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e 240
o Solve p* = p(p, T) and h* = h(p, T) for AL
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V. Enthalpy [kJ/kg]
@ For any new fluid, we only need the Figure: p— h— T map of R1234yf

Helmholtz equation = All maps and
functions can be generated.
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Compressor

o Data from automotive reciprocating
compressor’
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@ Model by (Li, 2013)3 60
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8 (Joseph H. Darr. “Modeling of an Automotive Air Conditioning Compressor Based on Experimental Data”. In: 1992.
URL: https://api.semanticscholar.org/CorpusID:18119266)

8 (Wenhua Li. “Simplified steady-state modeling for variable speed compressor”. In: Applied Thermal Engineering
[2013]. DOI: https://doi.org/10.1016/j.applthermaleng.2012.08.041)
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Expansion Valve

@ Published flow-pressure-temperature

data. ° -
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9 (Miles Walker. “Automotive R1234yf reversible heat pump system electronic expansion valve dataset and mass flow
modelling”. In: [June 2021])
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Chiller: Plate Heat Exchanger with OSF Turbulator

Nu = 3.918Rel.>% Re; 1354 B33 prt/3
Reeq = GegDh/ 11

Geqg = G(1 =) + Glpi/ pg)*°x

Re; = GDp/

By = g(p1 — pg) i/ )

9 (Rajendran Prabakaran et al. “Condensation of R1234yf in a plate heat exchanger with an offset strip fin flow
structure for electric vehicle heat pumps”. In: International Communications in Heat and Mass Transfer [2023]. DOL:
https://doi.org/10.1016/j.icheatmasstransfer.2023.106699)
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Chiller: Two-phase heat transfer

@ The vapor fraction significantly influences
the heat transfer coefficient. Enthalpy balance for each volume
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9 (Musbaudeen O. Bamgbopa. “Modeling and performance evaluation of an organic Rankine cycle (ORC) with R245FA
as working fluid”. PhD thesis. May 2012)
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Single-phase control volume

@ How do we determine the system pressure levels?

@ Two vapor-phase control volumes before & after the compressor.

General CV: Mass & Energy Balance Conversion to p, T

m= Wi, — Woy
U = Winhi, — Wouth(pa T)

@ With p and T as state variables we can
calculate any other properties using the
Helmholtz-EOS.
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AVL Thermal Management Lay

@ AVL Developed a TMS for a fuel cell truck.!0

@ Battery pack cooled by chillers

@ Side-mounted radiators cool power electronics and traction motor.

@ A liquid-to-liquid PHEX can siphon heat from the fuel cell circuit for extra cooling.
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0 (J. Linderl, J. Mayr, and M Hutter. “Optimized Fuel Cell Drive for Long-haul Trucks". In: ATZ Heavy Duty
Worldwide [2021]. DOI: 10.1007/s41321-021-0407-5)
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Side-mounted Radiators

@ Mercedes-Benz GenH?2
Truck prototype!!

@ Side mounted radiator &
fan assemblies
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ECCV Implementation

Front — Power )
Electronics

Radiator/Condenser

g :
s

. . . Fuel Cel!

. = .PHE)( : l

Expansion Valve Motor Side-mount

‘ radiators

Compressor

H l —
—=
-
= N
Chiller -

Max Johansson, LiU ECCV Platform Thermal Management Systems November 1



ECCV Implementation: Control objectives

o A difficult mission: Miinchen altitude profile at T,,,, = 40 °C and m = 40 ton.

e Simple control using P/PI regulators.

Objective Reference Ist 2nd 3rd

Speed 75 km/h  Motor torque

DC-bus 700 \Y Battery Current Fuel Cell Current Burn-off Current
SOC 50 % Fuel Cell Current

Battery Temp. 25 °C Compressor Speed

Fuel Cell Temp. 80/85 °C Radiator Bypass Valve PHEX Bypass Valve

Motor Temp. 70 °C Side-Radiator Bypass Valve  PHEX Bypass Valve

Chiller Superheat 5 °C Expansion Valve

Condenser Subcooling  >5 °C Refrigerant Charge
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Simulation Results
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Simulation Results
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Simulation Results
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Conclusions & Future Work

@ The system performs well considering the
difficult conditions.
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@ The liquid-to-liquid heat exchanger :
connecting the fuel cell coolant circuit to " ‘
the motor circuit is able to save the fuel
cell from overheating.
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e — Side-mounted radiators are great.
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Conclusions & Future Work

@ Incusion of cabin air-conditioning.

@ Extensive model validation in cooperation
with Volvo Trucks.

@ Development of predictive energy
management strategies.

@ Increased collaboration with other
universities.
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