Employing probabilistic machine learning models in the project is a ground for an optimal decision making, in particular to satisfy the ultra-reliability requirements where uncertainty quantifications are crucial. The project aims to use probabilistic classification and regression frameworks to guarantee flexibility and autonomy of 5G components, and also use spatial and temporal models in order to take into account dynamic aspects such as device velocity, device movement path or daily/monthly variations of the network workload.
To autonomously adapt to various environmental changes and disturbances, the project aims to embed online learning components into our methods. Efficiency and scalability are challenges in the efficient development of the autonomous 5G environment, and development of appropriate big data processing methods is yet another aim of the project.