Electronics Engineering, Master's programme

120 credits
Electronics Engineering, masterprogram
6MELE
Valid from: 2018 Spring semester

Determined by
Board of Studies for Electrical Engineering, Physics and Mathematics

Date determined
Purpose

The objective of this master's programme is to provide a strong and competitive education in Electronics Engineering, with emphasis on design of integrated circuits and System-on-Chip in advanced semiconductor technologies as well as embedded systems. The motivation behind the programme is the growing global demand for electronics engineers with knowledge and skills in design of digital, analogue, and Radio Frequency (RF) integrated circuits and System-on-Chip (SoC), combined with in-depth knowledge in signal processing, application specific processors, embedded systems design, modern communications systems, and radio transceivers design. Mobile phones, internet, PCs and TVs, are just a few examples that constantly improve in functionality, performance and cost. In addition, there is growing number of concepts and technologies which will significantly improve areas such as mobile and broadband communications, healthcare, automotive, robotics, energy-systems management, entertainment, consumer electronics, public safety and security, industrial applications, and much more. This indicates that there will be large industrial opportunities in the future, and also large demand for competent engineers with the required knowledge and skills to lead the design of such complex integrated circuits and systems.

Aim

Knowledge and reasoning in mathematics, natural sciences, and engineering

Graduates from the Master’s programme in Electronics Engineering should

- have a solid knowledge in design of integrated circuits and System-on-Chip (SoC), as well as in-depth understanding of signal processing, application specific processors, embedded systems design, and modern communications systems.
- understand, formulate, and solve the complex problems related to the design of integrated circuits and system-on-chip.
- be able to apply modern methodologies for design of integrated circuits and systems.
- be able to carry out modelling, simulation, and physical design of RF, analogue, and digital integrated circuits and systems in advanced semiconductor technologies.
- be able to make effective use of computers and Computer-Aided Design (CAD) tool environments.
- be able to carry out measurement and evaluation of integrated circuits and systems.

Personal and professional skills and attributes

Graduates from the Master’s programme in Electronics Engineering should
be able to formulate a model for a relevant problem and critically evaluate its validity.
be creative, enterprising and take responsibility for the own contribution to the solution of a problem.

Interpersonal skills: teamwork and communication

Graduates from the Master’s programme in Electronics Engineering should

- be capable of teamwork and active collaboration within a group by sharing tasks and responsibilities
- be able to initialize, plan, carry out and evaluate scientific and engineering projects
- be able to communicate and to give presentations in English, orally and in writing

Conceiving, designing, implementing, and operating systems in the enterprise and social context

Graduates from the Master’s programme in Electronics Engineering should

- have a deep insight into the broad field of science and engineering: from initial concepts to implementation aspects
- be aware of the impact of science and engineering on society

Content

The programme comprizes two years of studies, and includes both compulsory and elective courses.

The first semester consists of a set of compulsory courses providing the necessary knowledge in digital and analog integrated circuits, telecommunications, RF electronics and design of digital systems. From the second semester the students must follow one of the two specializations, focusing either on digital system-on-chip design and embedded systems or on design of mixed analogue/digital and radio frequency integrated circuits.

Education profiles

During the second and third semester it is compulsory for the student to follow one of the two specializations:

- System on Chip with focus on digital system on chip design and embedded systems
- Analogue/Digital and RF IC Design with emphasis on design of mixed analogue/Digital and radio frequency integrated circuits
A specialization consists of a set of compulsory courses, and the compulsory courses for each specialization are given by the Curriculum. For the System on Chip specialization the compulsory courses are:

- System Design and Methodology
- VLSI Design
- Design of Embedded DSP Processor
- Evaluation of an Integrated Circuit
- Communication, Ethics and Sustainable Development

and for the Analogue/Digital and RF IC Design specialization the compulsory courses are:

- Radio Frequency Integrated Circuits
- VLSI Design
- Evaluation of an Integrated Circuit
- Radio Frequency Transceiver Design
- Communication, Ethics and Sustainable Development

In addition to the compulsory courses during the second and third semester the program offers a large number of complementary and highly related elective courses offered within both Electrical Engineering and Computer Science, which can be selected by students depending on the individual directions of interests.

Finally, the fourth semester is dedicated to the Master's thesis project.

Entry requirements

- Bachelor's degree in electrical engineering or equivalent. The Bachelor's degree (equivalent to a Swedish Kandidatexamen) shall be from an internationally recognised university. The university has to be listed in the latest edition of the International Handbook of Universities (http://www.iau-aiu.net/).
- 20 ECTS credits in mathematics/applied mathematics and/or applications of mathematics relevant for the programme, including courses in calculus, linear algebra, probability, transform methods
- English corresponding to the level of English in Swedish upper secondary education (English 6/B). This is normally attested by means of an internationally recognised test.

Selection for the January application round is based on merit rating (grade tariff) at three levels. If necessary, applicants within the same merit group will be selected by lot.
Degree thesis

The thesis should be based on the high quality scientific content and carried out in close contact with the research groups involved in the programme and in the area of the profile chosen by the students. Without special permission a thesis work may be performed in the following subject areas:

- Electronic Devices
- Electronic Systems
- Communication Systems
- Computer Engineering

Degree requirements

- Bachelor's degree as specified in the entrance requirements
- All compulsory and elective courses from the curriculum completed so that 120 ECTS is reached
- At least 90 ECTS on advanced level including 30 ECTS courses from the major subject Electrical Engineering and 30 ECTS master's thesis in the major subject Electrical Engineering
- Master's thesis (30 ECTS) on advanced level, in the major subject Electrical Engineering, examined at the Faculty of Science and Engineering

Courses overlapping each other regarding contents are not allowed to be included in the degree. Courses used for the Bachelor's degree can never be included in the Master's degree.

Degree in Swedish

Master of Science (120 credits) with a major in Electrical Engineering

Degree in English

Master of Science (two years) with a major in Electrical Engineering
Specific information

Certain PhD courses can be taken by master students. Please contact the directors of graduate studies:

- Deptartment of Electrical Engineering, forskarstudierektor@sy.liu.se
- Deptartment of Computer and Information Science, forskarstudierektor@ida.liu.se

Common rules

See also common rules