Degree project - Master’s Thesis

Programme course

30 credits
Examensarbete
TQXX33
Valid from: 2020 Spring semester

Determined by
Övrigt

Date determined
2019-09-23
Main field of study

see special list

Course level

Second cycle

Advancement level

A1X

Course offered for

- Computer Science and Engineering, M Sc in Engineering
- Design and Product Development
- Energy-Environment-Management M Sc in Engineering
- Industrial Engineering and Management - International, M Sc in Engineering
- Electronics Design Engineering, M Sc in Engineering
- Industrial Engineering and Management, M Sc in Engineering
- Information Technology, M Sc in Engineering
- Chemical Biology, M Sc in Engineering
- Communication and Transportation Engineering, M Sc in Engineering
- Biomedical Engineering, M Sc in Engineering
- Media Technology and Engineering, M Sc in Engineering
- Computer Science and Software Engineering, M Sc in Engineering
- Mechanical Engineering, M Sc in Engineering
- Engineering Biology, M Sc in Engineering
- Applied Physics and Electrical Engineering - International, M Sc in Engineering
- Applied Physics and Electrical Engineering, M Sc in Engineering

Specific information

Master of Science in Engineering

Entry requirements

To be qualified to conduct a degree project the student must have completed at least 240 ECTS credits within the programme. In addition, all mandatory courses from semester 1 to and including semester 6 (180 ECTS) must be completed; alternatively, a bachelor’s
degree in the relevant main field of study (see admissions requirements for Degree of Master of Science in Technology) as well as 30 ECTS credits at the advanced (graduate) level within the main field of study must be completed.

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.

Intended learning outcomes

Knowledge of subject area
The student is expected to demonstrate ability to
- systematically integrate the knowledge acquired during his/her studies
- demonstrate substantially deepened knowledge of methodology as well as knowledge of the subject area within the main field of study
- assimilate the content of relevant scientific literature and relate the work to this

Personal and professional skills
The student is expected to demonstrate ability to
- plan, implement and present an independent degree project
- formulate issues, plan and carry out advanced tasks within specified time limits
- find and evaluate scientific literature

Teamwork and communication
The student is expected to demonstrate ability to
- present an independent degree project in writing and orally in a professional manner
- critically examine and oppose another student’s degree project that is presented in writing and orally

CDIO Engineering skill
The student is expected to demonstrate ability to
- create, analyse and/or evaluate technical solutions in the form of systems, theories or methods
- make assessments with regard to applicable ethical and societal conditions such as economically, socially and ecologically sustainable development

Course content
Determined individually for each student in consultation with the examiner and the supervisor. The project must be carried out within the main field of study.

Teaching and working methods

The course consists of an independent degree project. A supervisor and an examiner are appointed for each student or group of students. The degree project is the final step before graduation.

Examination

<table>
<thead>
<tr>
<th>Component</th>
<th>UPG1 Planning report, midterm assessment, written report, oral presentation and reflection document</th>
<th>U, 28 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPPO Opposition</td>
<td>U, 1.5 credits</td>
</tr>
<tr>
<td></td>
<td>AUSK Attendance at three thesis presentations</td>
<td>D, 0.5 credits</td>
</tr>
</tbody>
</table>

Only degree projects at a level equal to or higher than that of your personal degree project can be selected for opposition and thesis presentation attendance.

The written report must be ready for publication including an individual document of reflections made on the completed project process.

The student must oppose on at least one degree project.

Attendance at thesis presentations may be done starting the seventh semester of the programme Master of Science in Engineering, and is recorded until registration of the master’s thesis can be done in the course code TEXCIV.

The course is graded Pass/Fail.

Grades

Two grade scale, older version, U, G

Other information

About teaching and examination language

The teaching language is presented in the Overview tab for each course. The examination language relates to the teaching language as follows:

- If teaching language is Swedish, the course as a whole or in large parts, is taught in Swedish. Please note that although teaching language is Swedish, parts of the course could be given in English. Examination language is Swedish.
- If teaching language is Swedish/English, the course as a whole will be taught in English if students without prior knowledge of the Swedish language participate. Examination language is Swedish or English (depending on teaching language).
- If teaching language is English, the course as a whole is taught in English. Examination language is English.

Other

The course is conducted in a manner where both men's and women's experience and knowledge are made visible and developed.

The planning and implementation of a course should correspond to the course syllabus. The course evaluation should therefore be conducted with the course syllabus as a starting point.

Department

Tekniska fakultetens kansli

Education components

Preliminary scheduled hours: 0 h
Recommended self-study hours: 800 h

Course literature

Other

Determined individually for each student in consultation with the examiner and the supervisor.