Multiple Antenna Communications, 6 credits (TSKS14)

Flerantennkommunikation, 6 hp

Main field of study

Computer Science and Engineering Electrical Engineering

Level

Second cycle

Course type

Programme course

Examiner

Emil Björnson

Director of studies or equivalent

Lasse Alfredsson

Available for exchange students

Yes
Course offered for Semester Period Timetable module Language Campus VOF
6CDDD Computer Science and Engineering, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CDDD Computer Science and Engineering, M Sc in Engineering (Communication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIII Industrial Engineering and Management, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIII Industrial Engineering and Management, M Sc in Engineering (Electrical Engineering Specialization) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIII Industrial Engineering and Management, M Sc in Engineering (Master Profile Telecommunication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French (Specialization Electrical Engineering) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French (Master Profile Telecommunication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese (Specialization Electrical Engineering) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese (Master Profile Telecommunication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish (Specialization Electrical Engineering) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish (Master Profile Telecommunication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German (Specialization Electrical Engineering) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German (Master Profile Telecommunication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CITE Information Technology, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CITE Information Technology, M Sc in Engineering (Communication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYY Applied Physics and Electrical Engineering, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYY Applied Physics and Electrical Engineering, M Sc in Engineering (Communication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Communication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Communication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Communication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Communication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Communication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese (Specialization Electrical Engineering) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese (Master Profile Telecommunication) 8 (Spring 2019) 2 2 Swedish/English Linköping v
6MCSY Communication Systems, Master's Programme 2 (Spring 2019) 2 2 Swedish/English Linköping o
6MELE Electronics Engineering, Master's Programme (System-on-Chip) 2 (Spring 2019) 2 2 Swedish/English Linköping v
6MELE Electronics Engineering, Master's Programme (Analogue/Digital and RF IC Design) 2 (Spring 2019) 2 2 Swedish/English Linköping v

Main field of study

Computer Science and Engineering, Electrical Engineering

Course level

Second cycle

Advancement level

A1X

Course offered for

  • Computer Science and Engineering, M Sc in Engineering
  • Industrial Engineering and Management, M Sc in Engineering
  • Industrial Engineering and Management - International, M Sc in Engineering
  • Information Technology, M Sc in Engineering
  • Applied Physics and Electrical Engineering, M Sc in Engineering
  • Applied Physics and Electrical Engineering - International, M Sc in Engineering
  • Master's Programme in Communication Systems
  • Master's Programme in Electronics Engineering

Specific information

The course has been withdrawn

Entry requirements

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.

Prerequisites


From linear algebra: Computations with matrices and vectors, determinant, eigenvalues.
From Signals, information and communication (or equivalent): Channel models, channel capacity, the entropy concept.
From Digital communications: Multi‐carrier systems, link adaptation.
From Detection and Estimation of Signals: Estimation with linear signal models (recommended but not necessary).

A course in wireless communications is also recommended, but is not necessary.
 

Intended learning outcomes

After passing the course, the student should

  • be able to describe and discuss the fundamental limitations when using the wireless medium for communications; in particular, the relations between channel capacity, channel coherence, spatial degrees of freedom, transmission power, pilot contamination, and bandwidth
  • be able to identify and describe how multiple antenna techniques are used to achieve high capacity in point‐to‐point as well as multi‐user communications
  • with some precision be able to solve engineering oriented problems regarding the achievable performance and limits of multiple antenna communications
  • be able to utilize power control and other parameters to design communication systems that meet given service quality requirements
  • experimentally validate the main theoretic multiple antenna concepts. 

Course content

Fundamental limits: Capacity behavior as power or bandwidth increases. Examples of practical systems that are power and bandwidth limited. Orthogonal versus non-orthogonal transmission in scenarios with multiple users.
Basic multiple antenna channels: Array gain, capacity of channels with multiple antennas at one side. Modeling of multi‐antenna channel responses.
Fading channels: Rayleigh fading channels, outage capacity, diversity, channel coherence, ergodic capacity.
Point‐to‐point MIMO: Capacity of channels with multiple antennas at both sides, multiplexing gain, spatial degrees of freedom.
Uplink multi‐user MIMO: Uplink capacity, non‐linear and linear detection, channel estimation, capacity bounds in systems with many antennas.
Downlink multi‐user MIMO: Linear precoding, capacity bounds in systems with many antennas, differences and similarities between uplink and downlink.
Power control: Rate region, typical operating points, basic power allocation formulations.
Cellular networks: Engineering aspects of applying multiple antenna techniques in cellular networks, including reuse strategies, pilot contamination, and interference management.
The purpose of the laboratory work is to become familiar with the zero‐forcing processing concept, to implement such a technique, and to evaluate its behaviors experimentally.

Teaching and working methods

Teaching is given as lectures, tutorials and laboratory exercises.

Examination

TEN1Written examinationU, 3, 4, 55 credits
LAB1Laboratory workU, G1 credits

Grades

Four-grade scale, LiU, U, 3, 4, 5

Course literature

T. L. Marzetta, E. G. Larsson, H. Yang, H. Q. Ngo, Fundamentals of Massive MIMO, 2016. Cambridge University Press
Additional material will be distributed during the course.

Department

Institutionen för systemteknik

Director of Studies or equivalent

Lasse Alfredsson

Examiner

Emil Björnson

Education components

Preliminary scheduled hours: 49 h
Recommended self-study hours: 111 h

Course literature

Books
T. L. Marzetta, E. G. Larsson, H. Yang, H. Q. Ngo, (2016) Fundamentals of Massive MIMO Cambridge University Press
ISBN: 9781107175570
http://www.cambridge.org/se/academic/subjects/engineering/wireless-communications/fundamentals-massive-mimo

Books

T. L. Marzetta, E. G. Larsson, H. Yang, H. Q. Ngo, (2016) Fundamentals of Massive MIMO Cambridge University Press

ISBN: 9781107175570

http://www.cambridge.org/se/academic/subjects/engineering/wireless-communications/fundamentals-massive-mimo

TEN1 Written examination U, 3, 4, 5 5 credits
LAB1 Laboratory work U, G 1 credits

Structure and organisation of study programmes

The contents and design of the programmes are to be continuously revised such that new knowledge is integrated into courses and specialisations. Within one programme, several study specialisations or profiles may be available. The identities of the study specialisations or profiles and the regulations governing how these may be selected are given in the syllabus and curriculum for the particular field of study and programmes.

The structure and organisation of the programmes are to follow specified criteria that are summarised in the syllabus for each programme.

  • The syllabus defines the aims of the study programme.
  • The curriculum, which constitutes one part of the syllabus for the field of study, gives details of the terms in which the various courses have been timetabled, and their scheduling through the academic year.
  • The course syllabus specifies, among other things, the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Qualification requirements

The qualification requirements specified in the Higher Education Ordinance 2007 apply to students admitted after 1 July 2007. A student who has completed components of a programme after 1 July 2007 has the right to be assessed with respect to the qualification requirements specified by the Higher Education Ordinance 2007. In addition, local regulations laid down by the faculty boards and university board apply, see http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva/Examina.

Higher Education Act Chapter 1, Section 8:

First-cycle courses and study programmes are to develop:

  • the ability to make independent and critical assessments
  • the ability to identify, formulate and solve problems autonomously, and
  • the preparedness to deal with changes in working life.

In addition to knowledge and skills in their field of study, students shall develop the ability to:

  • gather and interpret information at a scholarly level
  • stay abreast of the development of knowledge, and
  • communicate their knowledge to others, including those who lack specialist knowledge in the field.

Qualifications within a study programme

Qualification requirements that are specific to a study programme are given in the syllabus for that programme.

Matriculation and postponement of matriculation

A person who has been accepted for a study programme is to start their studies (matriculate) in the term that is specified in the decision about admission. The date and location of the compulsory matriculation procedure will be communicated to those admitted to the first term of the programme.

At any one admission occasion, it is possible to be admitted to only one place on a study programme. A student who has been granted a place on a study programme and who is offered and accepts a place on another study programme during a supplementary round of admission will lose the place offered for the first study programme.

Regulations concerning postponement of matriculation have been laid down in the admission regulations for Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622645.

A person who has been granted postponement must present to the admitting authority, before the term in which the studies are to be started and before the date of application, a renewed registration for the programme and a copy of the decision granting postponement.

Admission to a later part of a programme

Admission to a part of a study programme is used here to refer to admission with the purpose of completing the programme and taking a degree. Admission to a later part of a programme may take place only if sufficient resources and space on the programme are available. Furthermore, the applicant must satisfy the entry requirements for the relevant term of the programme, as specified in http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva/Tekniska_fakulteten.

Interruption in studies

Notification of an interruption in studies is to be made through the Student Portal. If such a notification is not made and if the student does not register for the first term during which the interruption is to take place, the interruption will be considered to be a withdrawal. An interruption in studies must cover a complete term, and notification of interruptions can be given for a maximum of two consecutive terms. Notification of resumption of studies is to take place at the term registration for the term that follows the interruption. If the student does not register at the term registration, this will be regarded as withdrawal from studies.

A student who is taking an interruption in studies may during this period retake examinations if he or she has re-registered for the most recent study term of the programme. A student who wishes to take another course during the interruption in studies must apply for this separately. The student is responsible that registration for courses is carried out at the correct times in preparation for the resumption of studies.

Withdrawal from a study programme

A student who wishes to withdraw from a study programme must notify the study guidance counsellor. A student who leaves the studies without giving notification of an interruption in study and who fails to register for the immediately subsequent term is considered to have withdrawn. A student who has withdrawn may return to the study programme if a vacancy is available that is not required for students returning after an interruption in study, and not required for students who are changing their location of study and/or study programme.

Courses within a study programme

The curriculum for the various years of a study programme specify which courses are compulsory (o), elective (v) and voluntary (f). If a student wishes to study a different combination than the one specified in the curriculum, an application must be made to the board of studies.

Voluntary courses

The course specified as voluntary (labelled with “f”) in the programme syllabus are assessed solely as voluntary courses, and credits from these may not contribute to the requirements for a degree.

Courses from another study programme

Courses that are elective courses in another study programme may be included as elective courses in a degree, if the board of studies so decides. If such a decision is not taken, such courses are regarded as voluntary courses.

When selecting a course from another programme, the admission requirements specified in the course syllabus must be satisfied.

Admission is granted to the extent that resources allow, provided that places are available on the course.

Students taking a master’s programme in engineering

Students taking a master’s programme in engineering can take courses given in Term 7 and later terms of the programme from all engineering master’s programmes. Admission to courses at advanced level requires the possession of at least 150 credits within the programme to which the student has been admitted.

Students taking a Bachelor of Science (Engineering)

Student taking Bachelor of Science (Engineering) degrees may take courses specified in the programme syllabuses of all Bachelor of Science (Engineering) programmes. 

Students taking a Bachelor of Science

Student taking Bachelor of Science degrees may take courses specified in the programme syllabuses of all Bachelor of Science programmes.  

Third-cycle courses

The credits from third-cycle courses may be included as elective courses in a degree, if the board of studies so decides. If such a decision is not taken, such courses are regarded as voluntary courses. 

Students taking a master’s programme in engineering

It is possible for students taking master’s programmes in engineering to take certain third-cycle courses. It is, however, required in this case that the student has achieved master’s level (i.e. year 4 or 5 of the study programme). Information can be obtained from the relevant director of advanced studies.

Students on Master's programmes

It is possible for students taking master’s programmes to take certain third-cycle courses. Information can be obtained from the relevant director of advanced studies.

Registration for programme courses

Registration for courses that are given as part of a study programme must be made during the specified period, which has been preliminarily set to 1-10 April for the autumn term, and 1-10 October for the spring term. Information about course registration is published on a webpage, sent to students by email, and disseminated at scheduled information meetings.

Registration for programme courses as single-subject courses

Admission to a programme course as a single-subject subject course may take place only if sufficient resources and space on the course are available. Furthermore, the applicant must satisfy the entry requirements for the relevant course.

In the event of a scarcity of resources, the board of LiTH can decide to limit the possibilities of taking courses that are part of a programme as freestanding courses.

Timetabling

Courses are timetabled after a decision has been made concerning the assignment of the course to a timetable module. A central timetable is not drawn up for courses with fewer than five participants. Most project courses do not have a central timetable.

Study planning

Students who require support in planning their continued studies can contact the study guidance counsellor of the programme. Study planning involves the student and the study guidance counsellor together drawing up an individual plan for studies during the subsequent term. The individual plan may allow the student to deviate from the general curriculum.

Completed first-cycle courses are a precondition for successful studies at more advanced levels. For this reason, study planning is based on giving priority to courses from earlier years of study that have not been completed. If further capacity is available, new courses may be taken.

Study planning takes place on a regular basis if the student:

  • does not satisfy the requirements for progression to later terms. In order for a student to be able to participate in courses from later years in such cases, a decision of exemption is required.
  • does not satisfy the requirements for starting a degree project.

Other situations in which study planning may be required:

  • A student has fallen behind during the early part of a study programme and has failed to complete several courses.
  • A student has not satisfied the entry requirements for a degree project before term 6 of an engineering degree.
  • A student has applied for admission to a later part of a programme.
  • Studies have been carried out abroad.
  • A study programme is to be resumed after an interruption.

In these cases the study guidance counsellor supports the student in planning the continued studies, also in situations in which the student can register for the relevant courses without the need for a special decision for the continued studies.

Part of education abroad

Students can exchange study at LiTH for study at an institute of higher education abroad, and/or work on a degree project abroad.

In the event that study (courses) at LiTH are exchanged for study abroad, the relevant board of studies (faculty programme director) is responsible for a decision about an individual study plan, which is to be drawn up in advance, and about the final course approval and its inclusion in the qualification requirements. For this reason, students who plan to participate in an exchange should contact the faculty programme director (or equivalent) at the Dean’s Office of the Institute of Technology.

Regulations for entry requirements, ranking and nomination for study abroad through LiTH’s exchange agreements and for the compulsory study abroad period within Ii (Industrial Engineering and Management – International) and Yi (Applied Physics and Electrical Engineering – International) can be found at: http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva/Tekniska_fakulteten.

Course syllabus

A syllabus has been established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Timetabling

Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. A central timetable is not drawn up for courses with fewer than five participants. Most project courses do not have a central timetable.

Interrupting a course

The vice-chancellor’s decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: www.lith.liu.se/for-studenter/kurskomplettering?l=sv. 

Cancelled courses

Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The board of studies is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus. 

Regulations relating to examinations and examiners 

Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.

Forms of examination

Examination

Written and oral examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the board of studies.

Principles for examination scheduling for courses that follow the study periods:

  • courses given in VT1 are examined for the first time in March, with re-examination in June and August
  • courses given in VT2 are examined for the first time in May, with re-examination in August and October
  • courses given in HT1 are examined for the first time in October, with re-examination in January and August
  • courses given in HT2 are examined for the first time in January, with re-examination at Easter and in August.

The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2). 

  • Examinations for courses that the board of studies has decided are to be held in alternate years are held only three times during the year in which the course is given.
  • Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled.
  • If teaching is no longer given for a course, three examination occurrences are held during the immediately subsequent year, while examinations are at the same time held for any replacement course that is given, or alternatively in association with other re-examination opportunities. Furthermore, an examination is held on one further occasion during the next subsequent year, unless the board of studies determines otherwise.
  • If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the board or boards of studies determine together the scheduling and frequency of re-examination occasions.

Registration for examination

In order to take an examination, a student must register in advance at the Student Portal during the registration period, which opens 30 days before the date of the examination and closes 10 days before it. Candidates are informed of the location of the examination by email, four days in advance. Students who have not registered for an examination run the risk of being refused admittance to the examination, if space is not available.

Symbols used in the examination registration system:

  ** denotes that the examination is being given for the penultimate time.

  * denotes that the examination is being given for the last time.

Code of conduct for students during examinations

Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682.

Retakes for higher grade

Students at the Institute of Technology at LiU have the right to retake written examinations and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code “TEN” and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.

Retakes of other forms of examination

Regulations concerning retakes of other forms of examination than written examinations and computer-based examinations are given in the LiU regulations for examinations and examiners, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.

Plagiarism

For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations.

A failure to specify such sources may be regarded as attempted deception during examination.

Attempts to cheat

In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=sv.

Grades

The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5). Courses under the auspices of the faculty board of the Faculty of Science and Engineering (Institute of Technology) are to be given special attention in this regard.

  1. Grades U, 3, 4, 5 are to be awarded for courses that have written examinations.
  2. Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.

Examination components

  1. Grades U, 3, 4, 5 are to be awarded for written examinations (TEN).
  2. Grades Fail (U) and Pass (G) are to be used for undergraduate projects and other independent work.
  3. Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).
  4. Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as other examination (ANN), tutorial group (BAS) or examination item (MOM).

The examination results for a student are reported at the relevant department.

This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page. There are no files available for this course.