

Mathematics, Master's Programme

120 credits

Matematik, masterprogram

6MMAT

Valid from: 2017 Spring semester

Determined by Board of Studies for Electrical Engineering, Physics and Mathematics

Date determined 2017-01-25

Entry requirements

Degree in Swedish Filosofie masterexamen med huvudområde matematik

Curriculum

Semester 1 (Autumn 2017)

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TAMS32	Stochastic Processes	6	A1X	1	С
TAOP34	Large Scale Optimization	6	A1X	3	С
TATM85	Functional Analysis	6*	A1X	2	С
TAMS46	Probability Theory, Second Course	6	A1X	3	E
TATA74	Differential Geometry	6*	G2X	3	E
TPPE16	Manufacturing Strategies	6	A1X	2	E
TPPE17	Corporate Finance	6	G2X	4	E
Period 2					
TAOP04	Mathematical Optimization	6	A1X	4	С
TATM85	Functional Analysis	6*	A1X	1	С
TATA74	Differential Geometry	6*	G2X	3	E
TPPE21	Production Logistics	6	A1X	4	E
TPPE29	Financial Markets and Instruments	6	A1X	2	E
TSIT02	Computer Security	6	G2X	2	E
TSKS11	Networks: Models, Algorithms and Applications	6	G2X	3	E

Specialisation: Computer Science

Course code	Course name	Credits	Level	Timetable module	ECV
Period 2					
TSIT02	Computer Security	6	G2X	2	E
TSKS11	Networks: Models, Algorithms and Applications	6	G2X	3	E

Specialisation: Mathematics

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TAMS46	Probability Theory, Second Course	6	A1X	3	E
TATA74	Differential Geometry	6*	G2X	3	E
Period 2					
TATA74	Differential Geometry	6*	G2X	3	E

Specialisation. Modelling and Optimization in Economics					
Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TAMS46	Probability Theory, Second Course	6	A1X	3	Е
TPPE17	Corporate Finance	6	G2X	4	E
Period 2					
TAOP04	Mathematical Optimization	6	A1X	4	E
TPPE21	Production Logistics	6	A1X	4	E
TPPE29	Financial Markets and Instruments	6	A1X	2	E

Specialisation: Modelling and Optimization in Economics

Semester 2 (Spring 2018)

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TANA15	Numerical Linear Algebra	6	A1X	1	С
TAMS29	Stochastic Processes Applied to Financial Models	6	A1X	3	E
TATA27	Partial Differential Equations	6	A1X	2	E
TATA64	Graph Theory	6*	A1X	2	E
TATA66	Fourier and Wavelet Analysis	6*	A1X	4	E
TATA78	Complex Analysis, second course	6*	A1X	2	E
TBMI26	Neural Networks and Learning Systems	6	A1X	2	E
TDDB68	Concurrent Programming and Operating Systems	6	G2X	3	E
TDDD20	Design and Analysis of Algorithms	6	A1X	3	E
TMMV08	Computational Fluid Dynamics	6	A1X	3	E
TPPE32	Financial Risk Management	6	A1X	2	E
TPPE78	Quantitative Models and Analysis in Operations Management	6	A1X	1	E
Period 2					
TGTU76	Philosophy of Science	6	G1X	4	С
TANA31	Computational Methods for Ordinary and Partial Differential Equations	6	A1X	2	E
TATA64	Graph Theory	6*	A1X	2	E
TATA66	Fourier and Wavelet Analysis	6*	A1X	2	E
TATA78	Complex Analysis, second course	6*	A1X	3	E
TDDC78	Programming of Parallel Computers - Methods and Tools	6	A1X	3	E
TDDD12	Database Technology	6	G2X	4	E
TDDD14	Formal Languages and Automata Theory	6	G2X	2	E
TMMV07	Computational Fluid Dynamics, advanced course	6	A1X	4	E
TPPE74	Design and Development of Manufacturing Operations	6	A1X	4	E

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TATA66	Fourier and Wavelet Analysis	6*	A1X	4	E
TBMI26	Neural Networks and Learning Systems	6	A1X	2	E
TMMV08	Computational Fluid Dynamics	6	A1X	3	E
ТЅВКО7	Computer Graphics	6*	A1X	4	E
Period 2					
TATA66	Fourier and Wavelet Analysis	6*	A1X	2	E
TDDC78	Programming of Parallel Computers - Methods and Tools	6	A1X	3	E
TMMV07	Computational Fluid Dynamics, advanced course	6	A1X	4	E
TSBK07	Computer Graphics	6*	A1X	1	E

Specialisation: Applied and Computational Mathematics

Specialisation: Computer Science

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TDDB68	Concurrent Programming and Operating Systems	6	G2X	3	E
Period 2					
TDDC78	Programming of Parallel Computers - Methods and Tools	6	A1X	3	E
TDDD12	Database Technology	6	G2X	4	E
TDDD14	Formal Languages and Automata Theory	6	G2X	2	E

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TATA27	Partial Differential Equations	6	A1X	2	E
TATA64	Graph Theory	6*	A1X	2	E
TATA66	Fourier and Wavelet Analysis	6*	A1X	4	E
TATA78	Complex Analysis, second course	6*	A1X	2	E
Period 2					
TATA64	Graph Theory	6*	A1X	2	E
TATA66	Fourier and Wavelet Analysis	6*	A1X	2	E
TATA78	Complex Analysis, second course	6*	A1X	3	E

Specialisation: Modelling and Optimization in Economics

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TAMS29	Stochastic Processes Applied to Financial Models	6	A1X	3	E
TPPE32	Financial Risk Management	6	A1X	2	E
TPPE78	Quantitative Models and Analysis in Operations Management	6	A1X	1	E
Period 2					
TPPE74	Design and Development of Manufacturing Operations	6	A1X	4	E

Semester 3 (Autumn 2018)

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TAMS39	Multivariate Statistical Methods	6	A1X	4	Е
TATA62	Project - Applied Mathematics	12*	A1X	4	Е
TATM38	Mathematical Models in Biology	6	A1X	3	Е
TDDC88	Software Engineering	12*	A1X	1	E
TDDD08	Logic Programming	6	A1X	4	Е
TNM067	Scientific Visualization	6	A1X	3	Е
TPPE53	Financial Valuation Methodology	6	A1X	2	E
TSBB06	Multidimensional Signal Analysis	6*	A1X	2	E
TSIT03	Cryptology	6	A1X	2	E
TSKS12	Modern Channel Coding, Inference and Learning	6	A1X	1	E
TSKS15	Detection and Estimation of Signals	6	A1X	2	E
Period 2					
TAOP04	Mathematical Optimization	6	A1X	4	С
TAMS17	Statistical Theory, advanced course	6	A1X	1	E
TAMS22	Probability Theory and Bayesian Networks	6	A1X	1	E
TAMS38	Experimental Design and Biostatistics	6	A1X	3	Е
TAOP18	Supply Chain Optimization	6	A1X	1	Е
TAOP61	Optimization of Realistic Complex Systems	6	A1X	3	E
TATA62	Project - Applied Mathematics	12*	A1X	4	Е
TDDC88	Software Engineering	12*	A1X	1	Е
TDDD56	Multicore and GPU Programming	6	A1X	2	E
TGTU04	Leadership	6	G2X	2	Е
TPPE61	Financial Optimization	6	A1X	2	E
TSBB06	Multidimensional Signal Analysis	6*	A1X	3	E
TSRT08	Optimal Control	6	A1X	3	E

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TSBB06	Multidimensional Signal Analysis	6*	A1X	2	E
Period 2					
TSBB06	Multidimensional Signal Analysis	6*	A1X	3	E
TSRT08	Optimal Control	6	A1X	3	E

Specialisation: Applied and Computational Mathematics

Specialisation: Computer Science

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TDDC88	Software Engineering	12*	A1X	1	E
TDDD08	Logic Programming	6	A1X	4	E
TSIT03	Cryptology	6	A1X	2	E
TSKS12	Modern Channel Coding, Inference and Learning	6	A1X	1	E
Period 2					
TDDC88	Software Engineering	12*	A1X	1	E
TDDD56	Multicore and GPU Programming	6	A1X	2	E

Specialisation: Mathematics

Course code	Course name	Credits	Level	Timetable module	ECV
Period 2					
TAMS17	Statistical Theory, advanced course	6	A1X	1	E

Specialisation: Modelling and Optimization in Economics

Course name	Credits	Level	Timetable module	ECV
Mathematical Optimization	6	A1X	4	E
Supply Chain Optimization	6	A1X	1	E
Optimization of Realistic Complex Systems	6	A1X	3	E
Financial Optimization	6	A1X	2	E
	Mathematical Optimization Supply Chain Optimization Optimization of Realistic Complex Systems	Mathematical Optimization6Supply Chain Optimization6Optimization of Realistic Complex Systems6	Mathematical Optimization6A1XSupply Chain Optimization6A1XOptimization of Realistic Complex Systems6A1X	Course nameCreditsLevelImoduleMathematical Optimization6A1X4Supply Chain Optimization6A1X1Optimization of Realistic Complex Systems6A1X3

Semester 4 (Spring 2019)

Course code	Course name	Credits	Level	Timetable module	ECV
Period 1					
TQXX30	Degree project - Master's Thesis	30*	A1X	-	С
Period 2					
TQXX30	Degree project - Master's Thesis	30*	A1X	-	С

ECV = Elective / Compulsory /Voluntary *The course is divided into several semesters and/or periods

Common rules

Structure and organisation of study programmes

The contents and design of the programmes are to be continuously revised such that new knowledge is integrated into courses and specialisations. Within one programme, several study specialisations or profiles may be available. The identities of the study specialisations or profiles and the regulations governing how these may be selected are given in the syllabus and curriculum for the particular field of study and programmes.

The structure and organisation of the programmes are to follow specified criteria that are summarised in the syllabus for each programme.

- The syllabus defines the aims of the study programme.
- The curriculum, which constitutes one part of the syllabus for the field of study, gives details of the terms in which the various courses have been timetabled, and their scheduling through the academic year.
- The course syllabus specifies, among other things, the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Qualification requirements

The qualification requirements specified in the Higher Education Ordinance 2007 apply to students admitted after 1 July 2007. A student who has completed components of a programme after 1 July 2007 has the right to be assessed with respect to the qualification requirements specified by the Higher Education Ordinance 2007. In addition, local regulations laid down by the faculty boards and university board apply, see

http://styrdokument.liu.se/Regelsamling/VisaBeslut/622693.

Higher Education Act Chapter 1, Section 8:

First-cycle courses and study programmes are to develop:

- the ability to make independent and critical assessments
- the ability to identify, formulate and solve problems autonomously, and
- the preparedness to deal with changes in working life.

In addition to knowledge and skills in their field of study, students shall develop the ability to:

- gather and interpret information at a scholarly level
- stay abreast of the development of knowledge, and
- communicate their knowledge to others, including those who lack specialist knowledge in the field.

Qualifications within a study programme

Qualification requirements that are specific to a study programme are given in the syllabus for that programme.

Matriculation and postponement of matriculation

A person who has been accepted for a study programme is to start their studies (matriculate) in the term that is specified in the decision about admission. The date and location of the compulsory matriculation procedure will be communicated to those admitted to the first term of the programme.

At any one admission occasion, it is possible to be admitted to only one place on a study programme. A student who has been granted a place on a study programme and who is offered and accepts a place on another study programme during a supplementary round of admission will lose the place offered for the first study programme.

Regulations concerning postponement of matriculation have been laid down in the admission regulations for Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622645.

A person who has been granted postponement must present to the admitting authority, before the term in which the studies are to be started and before the date of application, a renewed registration for the programme and a copy of the decision granting postponement.

Admission to a later part of a programme

Admission to a part of a study programme is used here to refer to admission with the purpose of completing the programme and taking a degree. Admission to a later part of a programme may take place only if sufficient resources and space on the programme are available. Furthermore, the applicant must satisfy the entry requirements for the relevant term of the programme, as specified in http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva/Tekniska_fakulteten.

Interruption in studies

Notification of an interruption in studies is to be made through the Student Portal. If such a notification is not made and if the student does not register for the first term during which the interruption is to take place, the interruption will be considered to be a withdrawal. An interruption in studies must cover a complete term, and notification of interruptions can be given for a maximum of two consecutive terms. Notification of resumption of studies is to take place at the term registration for the term that follows the interruption. If the student does not register at the term registration, this will be regarded as withdrawal from studies.

A student who is taking an interruption in studies may during this period retake examinations if he or she has re-registered for the most recent study term of the programme. A student who wishes to take another course during the interruption in studies must apply for this separately. The student is responsible that

registration for courses is carried out at the correct times in preparation for the resumption of studies.

Withdrawal from a study programme

A student who wishes to withdraw from a study programme must notify the study guidance counsellor. A student who leaves the studies without giving notification of an interruption in study and who fails to register for the immediately subsequent term is considered to have withdrawn. A student who has withdrawn may return to the study programme if a vacancy is available that is not required for students returning after an interruption in study, and not required for students who are changing their location of study and/or study programme.

Interrupting a course

The vice-chancellor's decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: www.lith.liu.se/for-studenter/kurskomplettering?l=sv.

Courses within a study programme

The curriculum for the various years of a study programme specify which courses are compulsory (o), elective (v) and voluntary (f). If a student wishes to study a different combination than the one specified in the curriculum, an application must be made to the board of studies.

Registration for programme courses

Registration for courses that are given as part of a study programme must be made during the specified period, which has been preliminarily set to 1-10 April for the autumn term, and 1-10 October for the spring term. Information about course registration is published on a webpage, sent to students by email, and disseminated at scheduled information meetings.

Registration for programme courses as single-subject courses

Admission to a programme course as a single-subject subject course may take place only if sufficient resources and space on the course are available. Furthermore, the applicant must satisfy the entry requirements for the relevant course.

Cancelled courses

Courses with few participants (fewer than 10) may be cancelled or organised in a

manner that differs from that stated in the course syllabus. The board of studies is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus.

Timetabling

Courses are timetabled after a decision has been made concerning the assignment of the course to a study period. A central timetable is not drawn up for courses with fewer than five participants. Most project courses do not have a central timetable.

Study planning

Students who require support in planning their continued studies can contact the study guidance counsellor of the programme. Study planning involves the student and the study guidance counsellor together drawing up an individual plan for studies during the subsequent term. The individual plan may allow the student to deviate from the general curriculum.

Completed first-cycle courses are a precondition for successful studies at more advanced levels. For this reason, study planning is based on giving priority to courses from earlier years of study that have not been completed. If further capacity is available, new courses may be taken.

Study planning takes place on a regular basis if the student:

- does not satisfy the requirements for progression to later terms. In order for a student to be able to participate in courses from later years in such cases, a decision of exemption is required.
- does not satisfy the requirements for starting a degree project.

Other situations in which study planning may be required:

- A student has fallen behind during the early part of a study programme and has failed to complete several courses.
- A student has not satisfied the entry requirements for a degree project before term 6 of an engineering degree.
- A student has applied for admission to a later part of a programme.
- Studies have been carried out abroad.
- A study programme is to be resumed after an interruption.

In these cases the study guidance counsellor supports the student in planning the continued studies, also in situations in which the student can register for the relevant courses without the need for a special decision for the continued studies.

Part of education abroad

Students can exchange study at LiTH for study at an institute of higher education abroad, and/or work on a degree project abroad.

In the event that study (courses) at LiTH are exchanged for study abroad, the

relevant board of studies (faculty programme director) is responsible for a decision about an individual study plan, which is to be drawn up in advance, and about the final course approval and its inclusion in the qualification requirements. For this reason, students who plan to participate in an exchange should contact the faculty programme director (or equivalent) at the Dean's Office of the Institute of Technology.

Regulations for entry requirements, ranking and nomination for study abroad through LiTH's exchange agreements are specified in: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622362. Special regulations apply for the compulsory study abroad within Ii (Industrial Engineering and Management – International) and Yi (Applied Physics and Electrical Engineering – International).

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU's rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.

Third-cycle courses

It is possible for students taking master's programmes to take certain third-cycle courses. Information can be obtained from the relevant director of advanced studies.

Degree project for Master's Degree in Engineering 300 credits, Master of Science (Two years), Master of Philosophy (Two years), Master of Science (One year), and master's degrees without prefix

General provisions for the degree project are given here. A specific board of studies may have supplementary regulations that are specific for a study programme. These are specified, where relevant, in the syllabus for the field of education and/or the degree project. Information and links to course syllabuses, registration, reflection documents, etc. can be found at www.lith.liu.se/examensarbete/examensarbete?l=sv.

General provisions

To be awarded a Master's Degree in Engineering 300 credits, Master of Science (Two years), Master of Philosophy (Two years), Master of Science (One year), or

master's degree without prefix a student must carry out an approved degree project. The components of the degree project are described in the relevant course syllabus.

Aim

The aim of the degree project is described in the relevant course syllabus, www.lith.liu.se/examensarbete/examensarbete?l=sv.

Extent

Requirements for the extent of the degree project for each type of degree are given in the syllabus of the study programme.

Locations for a degree project

The work is carried out in the form of:

- an internal degree project located at one of the participating departments at LiU
- an external degree project located at a company, government agency, or other organisation in Sweden or abroad, that an examiner has assessed is able to manage a degree project that satisfies the requirements, or
- a degree project within an exchange agreement in association with study abroad, whereby all study results are to be credited to the student by the relevant board of studies.

The main subject areas that are permitted within each study programme are described in the programme syllabus. Any individual subjects that may be relevant to the main subject area are to be determined by the relevant board of studies.

The divisions of a department at which a degree project within a certain subject area may be examined is determined by the board of studies that has the right to confer degrees for general degrees within the main subject area. An up-to-date list is given at http://lith.liu.se/sh/exjobbsomraden.html

Degree projects within agreements relating to study abroad

During study abroad that takes place within the framework of an agreement, the provisions of the host institute relating to degree projects are applied. The student is to consult the board of studies and together ensure that the proposed degree project is carried out in a main subject area that is permitted within the study programme. Approved main subject areas for degree projects are specified in the syllabus for the relevant programme.

A certificate confirming that the degree project has been approved and a copy of the degree project thesis (in PDF format) are to be submitted to the relevant board of studies.

Selection of degree project

A degree project is to be selected in consultation with an examiner, who is also responsible that the specialisation, extent and level of the project satisfy the

requirements specified in the course syllabus.

In cases in which issues relating to work-related copyright, patenting or remuneration may arise, provisions governing these should be established in advance. A student working on a degree project may sign a confidentiality agreement in order to obtain access to confidential information necessary for the degree project. The supervisor and examiner, however, determine whether they are prepared to sign a confidentiality agreement, and thus the confidential information must not normally be of such nature that it is necessary to supervise or grade the work. The complete degree project thesis is to be published during the grading procedure, unless special circumstances prevent this. If any part of the thesis should not be published, this must be approved in advance by the examiner and the relevant head of department. Note that final decisions relating to confidentiality are taken by an administrative court.

Commencement of a degree project

Requirements that must be satisfied before a degree project can be started are given in the currently valid course syllabus, which can be obtained at www.lith.liu.se/examensarbete/examensarbete?l=sv.

Notification of a degree project is to be carried out when the degree project starts, at www.lith.liu.se/for-studenter/anmalan-till-exjobb?l=sv. Registration of the degree project is to take place before work commences, after the student has registered for the term.

Before the start of the degree project, the examiner is to ensure that the student satisfies the conditions for commencement of the degree project within the relevant main subject area. Support in this can be obtained from the study guidance counsellor, who checks the requirements for starting the degree project.

The student is also to notify the relevant department of the start of the degree project.

Degree projects in collaboration with another student

In cases in which two students carry out a degree project together, the contribution of each student is to be specified. The extent of the work is to correspond to the extent of two individual projects. The examiner is to ensure that each student has contributed in a satisfactory manner to the work, and that each student satisfies the requirements for achieving a Pass grade for the degree project.

Degree projects carried out in collaboration between more than two students are not permitted.

Examiners

The examiner is to be employed at LiU as professor, associate professor, senior lecturer, research fellow, lecturer, research assistant, or postdoc (including guest and adjunct teachers), or is to have been appointed docent at LiU. He or she must have the expertise required to examine the degree project within the relevant

main subject area, and must be appointed by the departmental board or head of department. The examiner is to:

- before the start of the degree project, ensure that the student satisfies the conditions for commencement of the degree project within the relevant main subject area
- determine the specialisation and principal work of the degree project, based on an assessment of whether the degree project will result in the learning outcomes of the course syllabus being satisfied
- pass/fail the planning report
- pass/fail the mid-way assessment
- be responsible that the supervisor or supervisors carry out their duties
- before the presentation, check that the student has registered for the degree project
- approve the work for presentation
- before the presentation, check that the proposed opponent satisfies the conditions for commencement of the degree project and has attended three thesis presentations
- pass/fail the presentation and the opposition to it
- approve a concluding reflection document
- ensure that a degree project that has been passed satisfies the learning outcomes of the course syllabus and other requirements, and award a grade to the degree project (either G = Pass, or U = Fail).

Supervisors

A student working on a degree project is to have access to an internal supervisor at the department at which the degree project has been registered. The internal supervisor is to have a degree that corresponds at least to the level of the degree project to be supervised. The internal supervisor may, in exceptional circumstances, be the same individual as the examiner. A decision of whether to allow this in a particular case is to be made by the relevant board of studies before the degree project is started.

The supervisor is to ensure that the student obtains help with:

- expert support in general questions related to methods, specialist knowledge of the subject, and writing the thesis
- problem formulation, and setting the limits of the work
- scheduling and planning work, and selection of appropriate methods.

If the degree project is being carried out outside of LiTH, an external supervisor from the commissioner is to be appointed.

Planning report

During the first weeks of the degree project, the student is to draw up a planning report that contains:

- a preliminary title of the degree project
- a preliminary statement of the research question, against the background of a literature search

- a preliminary description of the approach to be taken
- planned literature foundation
- a schedule for the execution of the degree project, including suggested dates for the mid-way assessment and presentation.

Formulation of the research question is to be bounded, realistic and viewed from a perspective of societal or commercial benefit. The term "societal" is to be understood here to include universities and university colleges.

Mid-way assessment

Approximately half-way through the degree project, the student is to describe to the examiner at a mid-way assessment how the work is progressing relative to the planning report. The supervisor should also participate. The form of the mid-way assessment may be anything from an oral presentation to a public seminar. The conclusion of the mid-way assessment may be one of three possibilities:

- 1. The work has been carried out essentially as planned, and can continue as planned. The mid-way assessment has been passed.
- 2. The work has been carried out with certain deviations from the planning report. It is, however, believed that it will be possible to complete the work with minor adjustments to the formulation of the research question, approach and/or schedule. The mid-way assessment has been passed.
- 3. The work has deviated from the planning report in a significant manner, and there is a risk that a Pass grade cannot be given. The mid-way assessment has been failed. A new planning report must be drawn up and a new mid-way assessment carried out.

Reporting

Both oral and written reports of the degree project are to be made, in Swedish or English. The board of studies can allow the reporting to be carried out in another language than Swedish or English.

The oral presentation is to take place in public, unless there are special grounds that this should not be done. The written report is to be in the form of a professionally produced degree project thesis. The presentation and thesis are to follow the instructions given below.

Presentation

The oral presentation is to take place when the examiner considers that the work has been completed and is ready to be presented. The presentation is to take place at LiTH at a time when other students can attend. This means that the presentation can take place on a date that the student has agreed with the examiner, normally between the re-examination period in August and midsummer, and after the student has attended three thesis presentations.

The oral presentation is to describe the background to the problem that has been studied, describe the methods used, and present the results and conclusions. The presentation is to be at a level suitable for everyone present, not just for specialists. After the oral presentation, the student is to counter any criticism that

the opponent may raise, and allow other participants to pose questions. The presentation and the opposition are to be approved by the examiner. When any required adjustments of the thesis have been made, the reflection document has been approved, and the student has functioned as an opponent for another degree project, the degree project is reported as a passed course and the credits can be used to satisfy the requirements for a qualification.

Degree project thesis

The written degree project thesis is to be professionally written and comprehensive, and it is to demonstrate a scientific approach.

The contents are to be easy to understand, and the way in which material is presented is important. It must describe the background to the project and the formulation of the research question. The choice of approach is to be clearly explained, and the thesis should make clear the coupling between the results and the conclusions. Commonly accepted scientific methods are to be used for processing the results. The discussion is to be comprehensive, and demonstrate that the student masters analytical thought processes. The thesis is to demonstrate good mastery of the literature in the field, and include an abstract. Theses that are principally written in Swedish should contain a summary in English. A publication-ready manuscript and a reflection document covering the work undertaken are to be submitted to the examiner at least 10 days before the oral presentation. The examiner may grant an exemption from this requirement. If final versions of the required documents are not submitted as stipulated, the examiner may determine that the presentation is to be rescheduled.

The Faculty of Science and Engineering (Institute of Technology) at Linköping University recommends that degree project theses be published.

Opposition

An oral opposition is to be carried out either before or after the student presents his or her thesis. The opponent must satisfy the same requirements for the number and level of credits gained as those of the student's degree project. The opponent must also have attended three thesis presentations as a member of the audience. Acting as an opponent during the thesis presentation of another student is subject to points-based assessment as described in the course syllabus.

The opponent is to:

- discuss and comment on the selection of methods, results and (where relevant) data processing, conclusions, possible alternative solutions and conclusions, and the management of literature
- comment on the general arrangement of the degree project thesis and related, formal aspects of style, and comment on the oral presentation technique
- illuminate the strengths and weaknesses of the thesis.

The duration of the opposition should be approximately the same as that of the presentation, and it is to include a discussion in which the student presenting the thesis replies to and comments on the criticism raised by the opponent.

Unless otherwise agreed, at least one week before the presentation the opponent is to present in writing to the examiner the important issues that will be discussed, and the structure of the opposition that will be taken. The opponent and the examiner discuss the structure that the opponent has drawn up.

In a normal case, the number of opponents will be the same as the number of respondents. In exceptional cases, the examiner may decide that this is not to be the case.

Attendance at presentations

A student is to attend presentations of degree project theses as described in the course syllabus. The presentations attended must be at the same level or a higher level than the degree project of the student.

It is advantageous that one of the presentations attended is a licenciate degree seminar or a doctoral disputation. The student is responsible for ensuring that a certification of attendance at the presentation is obtained and passed to the departmental administrator for registration in Ladok. Attendance at such presentations is a component of the degree work that is subject to points-based assessment.

The occasions on which a student attends presentations are to be completed before the student presents the degree project thesis. The course syllabus for the degree project describes the scheduling of the attendance at presentations.

Reflection document

A document reflecting on the work that has been carried out is to be submitted to the examiner within 10 working days of the oral presentation. Instructions for preparing a reflection document can be reached through www.lith.liu.se/examensarbete/examensarbete?l=sv.

Grades

The degree project is graded as either Pass or Fail. In order for a student to obtain a pass grade for the degree project, all components must be completed and be awarded a pass grade.

Right to obtain supervision

It is expected that the student complete and pass a degree project within specified time limits. The department is required to provide supervision for a maximum of 18 months after the student has registered the degree project in Ladok. The examiner may grant additional supervision after this period in special cases. If the examiner determines that supervision is to be ended, the degree project is to be awarded a Fail grade.

If the degree project is awarded a Fail grade for the reason described above or for any other reason, the student is to be directed towards carrying out a further degree project.

Quality assurance

The relevant board of studies has overall responsibility for the quality of study programmes. This responsibility covers also degree projects. Quality assurance is to be carried out as determined by the faculty board.

Exemptions

If special circumstances apply, a board of studies may grant exemptions from the regulations specified above. The oral opposition, for example, may be replaced by an extensive written opposition, if the board of studies approves this

- for international students for whom special circumstances apply
- for other students for whom all other components of the qualification have been satisfied, the degree project thesis has been submitted, and special circumstances apply.

Written opposition may be carried out in one of the following ways:

- The student presents a written opposition to a degree project thesis that has been written by another student, whose examiner subsequently examines the opposition.
- The student's examiner requests that the student prepare a written opposition to a degree project thesis that has previously been examined by an examiner.

If written opposition is used, it is not necessary that the student prepare an introductory statement describing the structure.

The board of studies must approve that opposition may take place in written form, before it is carried out.

