Analys av Big data, 6 hp (732A54)

Big Data Analytics, 6 credits

Huvudområde

Statistik

Nivå

Avancerad nivå

Kurstyp

Programkurs

Examinator

Olaf Hartig

Kursansvarig

Olaf Hartig

Studierektor eller motsvarande

Patrick Lambrix
Kursen ges för Termin Veckor Språk Ort VOF
F7MSL Statistics and Machine Learning, Master´s Programme - First and main admission round 2 (VT 2021) v202113-202122 Engelska Linköping o
F7MSL Statistics and Machine Learning, Master´s Programme - Second admission round (open only for Swedish/EU students) 2 (VT 2021) v202113-202122 Engelska Linköping o
VOF = Valbar / Obligatorisk / Frivillig

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Fördjupningsnivå

A1N

Kursen ges för

  • Master's Programme in Statistics and Machine Learning

Förkunskapskrav

Kandidatexamen i något av följande ämnen: statistik, matematik, tillämpad matematik, datavetenskap, teknik eller motsvarande examen. Godkända/avklarade kurser i kalkyl och linjär algebra krävs.  Utöver detta, erfordras godkända/avklarade kurser i grundläggande statistik som motsvarar minst 6 hp och grundläggande programmering som motsvarar minst 6 hp.

Engelska B eller motsvarande. 

Lärandemål

Efter avslutad kurs skall den studerande på en avancerad nivå kunna:
- samla och lagra Big Data i en distribuerad datormiljö
- genomföra grundläggande förfrågningar till en databas som opererar på ett distribuerat filsystem
- redovisa grundläggande principer för parallella beräkningar
- använda MapReduce begreppet för att parallellisera vanliga databearbetningsalgoritmer
- redovisa hur vanliga maskininlärningsmodeller bör modifieras för att bearbeta Big Data
- använda redskap för maskininlärning av Big Data

Kursinnehåll

Kursen fokuserar på huvudbegrepp och huvudredskap för lagring, bearbetning och analys av Big Data som är nödvändiga för ett professionellt arbete och forskning inom dataanalys. 

- Introduktion till Big Data: koncept och redskap
- Introduktion till Python
- Grundläggande principer av parallella beräkningar
- Introduktion till databaser
- Filsystem och databaser för Big Data
- Förfrågningar för Big Data
- Resurshantering i en klustermiljö
- Parallella beräkningar för Big Data
- Grundläggande algoritmer för maskininlärning
- Maskininlärning för Big Data

Examination

Skriftlig redovisning av labbuppgifter. Skriftlig tentamen. Detaljerad information återfinns i studiehandledningen.

Om LiU:s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det. Om koordinatorn istället har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.

Studerande, vars examination underkänts två gånger på kursen eller del av kursen, har rätt att begära en annan examinator vid förnyat examinationstillfälle.

Den som godkänts i prov får ej delta i förnyat prov för högre betyg.

Betygsskala

ECTS, EC

Övrig information

Planering och genomförande av kurs ska utgå från kursplanens formuleringar. Den kursvärdering som ska ingå i varje kurs ska därför behandla frågan om hur kursen överensstämmer med kursplanen.

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Institution

Institutionen för datavetenskap
Det finns ingen kurslitteratur tillgänglig för den här kursen.
LAB1 Laboration EC 3 hp
TENT Tentamen EC 3 hp

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida. Det finns inga filer att visa.

Sidansvarig: Infocenter, infocenter@liu.se