Statistical Methods, 6 hp (732A93)

Statistical Methods, 6 credits

Kursbeskrivning

The course provides a theoretical basis of statistical concepts and methods that are required for qualified work and research in statistics. The course contents cover major concepts and methods from different statistical branches: probability theory, statistical inference, stochastic processes, Bayesian theory, regression analysis and sampling.

Huvudområde

Statistik

Nivå

Avancerad nivå

Kurstyp

Fristående och programkurs

Examinator

Ann-Charlotte Hallberg

Kursansvarig

Ann-Charlotte Hallberg

Studierektor eller motsvarande

Jolanta Pielaszkiewicz

Tillgänglig för utbytesstudenter

Ja
Kursen ges för Termin Veckor Språk Ort VOF
Fristående kurs (Halvfart, Dagtid) HT 2020 v202035-202044 Engelska Linköping
Fristående kurs (Halvfart, Dagtid) HT 2020 v202035-202044 Engelska Linköping
F7MSL Statistics and Machine Learning, Master´s Programme - First and main admission round 1 (HT 2020) v202035-202044 Engelska Linköping v
F7MSL Statistics and Machine Learning, Master´s Programme - Second admission round (open only for Swedish/EU students) 1 (HT 2020) v202035-202044 Engelska Linköping v
VOF = Valbar / Obligatorisk / Frivillig

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Fördjupningsnivå

A1N

Kursen ges för

  • Master's Programme in Statistics and Machine Learning

Förkunskapskrav

  • Kandidatexamen om 180hp (eller motsvarande) inom något av följande ämnen:
    • statistik
    • matematik
    • tillämpad matematik
    • datavetenskap
    • teknik
  • Godkända kurser i:
    • kalkyl
    • linjär algebra
    • statistik
    • programmering
  • Engelska 6/B
    (Undantag för svenska)

Lärandemål

Efter avslutad kurs skall den studerande kunna:

  • använda kunskaper om de vanliga statistiska fördelningarna för att skapa statistiska modeller,
  • tillämpa huvudprinciper inom punktskattning, intervallskattning och hypotesprövning,
  • visa en god förståelse av huvudkoncepten inom den Bayesianska analysen,
  • skapa linjära regressionsmodeller, kontrollera deras osäkerhet och genomföra modelljämförelser,
  • tillämpa metoder för sampling från stora ändliga populationer,
  • tillämpa grundläggande imputeringsmetoder för modellskapande och utvärdering,
  • redovisa bakomliggande matematiska modeller för de ovannämnda metoder och genomföra teoretiska beräkningar med dessa modeller.

Kursinnehåll

Kursen omfattar ett brett utbud av de mest viktiga begrepp och metoder inom statistiken.

Kursen innehåller:

  • sannolikhetsbegrepp,
  • slumpvariabel, vanliga statistiska fördelningar och dess egenskaper,
  • punkt- och intervallskattning,
  • hypotesprövning,
  • enkel och multipel linjär regression, t-test och F-test; Residual- och uteliggaranalys,
  • Likelihood, apriori och aposteriori fördelning, Bayes sats
  • introduktion till Markov kedjor,
  • sampling med och utan återläggning,
  • imputering för modellskapande.

Undervisnings- och arbetsformer

Undervisningen består av föreläsningar, seminarier och datorlaborationer som kompletteras med självstudier. Föreläsningarna ägnas åt presentationer av begrepp, teorier och metoder. Datorlaborationerna ger en praktisk erfarenhet av statistisk analys. Seminarierna ägnas åt presentationer och diskussioner av olika uppgifter.

Examination

Skriftliga redogörelser till inlämningsuppgifter samt en skriftlig tentamen. Detaljerad information återfinns i studiehandledningen.

Om LiU:s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det. Om koordinatorn istället har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.

Studerande, vars examination underkänts två gånger på kursen eller del av kursen, har rätt att begära en annan examinator vid förnyat examinationstillfälle.

Den som godkänts i prov får ej delta i förnyat prov för högre betyg.

Betygsskala

ECTS, EC

Övrig information

Planering och genomförande av kurs ska utgå från kursplanens formuleringar. Den kursvärdering som ska ingå i varje kurs ska därför behandla frågan om hur kursen överensstämmer med kursplanen.

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Institution

Institutionen för datavetenskap
Det finns ingen kurslitteratur tillgänglig för den här kursen.
INL1 Inlämningsuppgifter EC 3 hp
TENT Tentamen EC 3 hp

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida. Det finns inga filer att visa.

Sidansvarig: Infocenter, infocenter@liu.se