Matematik: Matematikdidaktik 1, 5.5 hp (92MA16)

Mathematics: Mathematics Education 1, 5.5 credits

Huvudområde

Matematik

Nivå

Grundnivå

Kurstyp

Programkurs

Examinator

Peter Frejd

Kursansvarig

Peter Frejd

Studierektor eller motsvarande

Jesper Thorén
Kursen ges för Termin Veckor Språk Ort VOF
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång engelska, 300 hp (Ingång engelska) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång biologi, 300 hp (Ingång biologi) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång historia, 300 hp (Ingång historia) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång samhällskunskap, 330 hp (Ingång samhällskunskap) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång textilslöjd, 270 hp (Ingång textilslöjd) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång trä- och metallslöjd, 270 hp (Ingång trä- och metallslöjd) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång historia, 270 hp (Ingång historia) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång engelska, 270 hp (Ingång engelska) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång samhällskunskap, 270 hp (Ingång samhällskunskap) 3 (HT 2018) v201838-201851 Svenska Linköping v
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång biologi, 270 hp (Ingång biologi) 3 (HT 2018) v201838-201851 Svenska Linköping v
VOF = Valbar / Obligatorisk / Frivillig

Huvudområde

Matematik

Utbildningsnivå

Grundnivå

Fördjupningsnivå

G1X

Kursen ges för

  • Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan
  • Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9

Förkunskapskrav

För tillträde till kursen krävs områdesbehörighet 6c (Engelska B,
Samhällskunskap A) och Ma D eller områdesbehörighet A6c
(Samhällskunskap 1b/1a1+1a2) och Matematik 4, samt
genomgångna kurser Allmändidaktik, 5 hp,
Utveckling och lärande, 10 hp, Kunskapsbedömning och
betygsättning, 7.5 hp, Utbildningshistoria, skolans samhälleliga
roll och värdegrund, 7.5 hp samt Ingångsämne 1-30 hp och Matematik: geometri, 5 hp,, eller
motsvarande

Lärandemål

Efter avslutad kurs skall den studerande kunna
- utifrån gällande läro- och kursplaner redogöra för och analysera mål och innehåll i skolans matematik och relatera dessa till olika teoretiska framställningar av matematiska begrepp och metoder
- redogöra för och jämföra olika sätt att se på kunskapsbegreppet i matematik som disciplin och som skolämne
- redogöra för och jämföra ämnesdidaktiska aspekter av för skolan centrala begrepp, operationer, satser och metoder inom aritmetik, algebra och funktionslära
- visa insikt i matematisk bevisföring och analysera hur intuitivt och logiskt tänkande kan komplettera varandra för förståelsen av matematiska begrepp och metoder
- resonera kring elevers föreställningar om och sätt att tillägna sig grundläggande matematiska begrepp och färdigheter inom funktionslära och algebra
- söka, sammanställa, jämföra och redovisa resultat från skolrelevant matematikdidaktisk forskning
- redogöra för betydelsen av sociala och kulturella faktorer i samband med undervisningsverksamhet, inklusive genusperspektiv
- diskutera, jämföra och redogöra för några olika aspekter av IKT-användning i matematikundervisningen, speciellt användandet och integrering av responssystem
- grunderna i något av de tekniska hjälpmedlen MATLAB, Mathematica, Maple och GeoGebra
 - beskriva matematikens historiska utveckling och diskutera dess roll i samhället i ett internationellt perspektiv och ett genusperspektiv, samt ge exempel på hur detta kan behandlas i matematikundervisningen i skolan.

Kursinnehåll

I kursen gör studenten ämnesdidaktiska analyser av skolrelevanta matematiska begrepp och metoder med fokus på multipla representationer och förklaringsmodeller. Studenten problematiserar relationen mellan matematiken i skolan och i samhället, samt diskuterar matematik som vetenskaplig disciplin och som skolämne med koppling till mål och innehåll i skolans matematik utifrån gällande läro- och kursplaner såväl som samhället i stort. Studenten genomför didaktiska analyser med utgångspunkter i teoretiska perspektiv på kunnande och lärande i matematik. Samt orienterar sig om matematikundervisningens sociala och affektiva dimensioner; det multikulturella klassrummet; genus och matematik. Studenten arbetar även med symbolbehandlande datorprogram och andra tekniska hjälpmedel såsom MATLAB, Mathematica, Maple, GeoGebra och applikationer till smarta telefoner och surfplattor, samt planerar undervisning som integrerar sådana tekniska hjälpmedel. I kursen arbetar studenten med matematikens historia med fokus på utvecklingen av centrala matematiska idéer, begrepp och metoder med avstamp och nedslag i matematiken i Egypten, Babylonien, Grekland såväl som de arabiska och indiska matematiska skolorna. Speciellt behandlas algebrans, ekvationernas, kalkylens och analysens utveckling. Kursen lyfter också fram matematikens roll i samhället ur olika perspektiv samt hur detta och den historiska utvecklingen kan behandlas i undervisningen i skolan.

Undervisnings- och arbetsformer

Undervisningen sker i form av föreläsningar, seminarier, grupparbeten samt självstudier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Examination

Gäller för alla kurser oavsett betygsskala.

  • Studerande som underkänts två gånger på kursen eller del av kursen har rätt att begära en annan examinator vid förnyat examinationstillfälle.

Om kursen har tregradig betygsskala (U – VG) gäller följande:

  • Studerande som godkänts i prov får ej delta i förnyat prov för högre betyg.

Om kursen är en VfU-kurs gäller följande:

  • Examination av tillämpade sociala och didaktiska förmågor begränsas till tre (3) tillfällen.

Betygsskala

Tregradig skala, U, G, VG

Övrig information

Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som skall ingå i varje kurs skall därför behandla frågan om hur kursen överensstämmer med kursplanen.

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Institution

Matematiska institutionen
Bergsten, C. m. fl (1997). Algebra för alla. Nämnaren Tema. Göteborg: NCM Brandell, G., & Pettersson, A. (Red.). (2011) Matematikundervisning. Vetenskapliga perspektiv. Stockholm: Stockholms universitets förlag Gustafsson, L. & Mouwitz, L. (2002). Vuxna och matematik - ett livsviktigt ämne. Göteborg: NCM. Jablonka, E. (2009). Mathematics for all: why? what? when? In C. Winsløw (Ed.), Nordic research in mathematics education. Proceedings from NORMA08 in Copenhagen, April 21 - April 25, 2008. (pp. 293-306). Rotterdam: Sense Publishers. James, M. C., & Willoughby, S. (2011). Listening to student conversations during clicker questions: What you have not heard might surprise you! American Journal of Physics, 79(1), 123. Niss, M. (1994). Mathematics in society. In R. Biehler et al. (Eds.), Didactics of mathematics as a scientific discipline (pp. 367-378). Dordrecht: Kluwer. Skolverkets kursplaner och betygskriterier i matematik. Smith, M. K., Wood, W. B., Adams, W. K., Wieman, C., Knight, J. K., Guild, N., & Su, T. T. (2009). Why peer discussion improves student performance on in‐class concept questions. Science, 323(5910), 122–4. Wieman, C. et al. (2009). Clicker Resource Guide: An Instructor’s Guide to the Effective Use of Personal Response Systems (Clickers) in Teaching.
SRE1 Muntl redov m skriftligt underlag: Ämnessdidaktisk konkretis U, G 3 hp
SRE2 Skriftlig redovisn: Ämnesdidakt rapport U, G, VG 1.5 hp
MRE1 Muntl redovisn: Matematikens historia U, G 1 hp

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida. Det finns inga filer att visa.

Sidansvarig: Studieinformation, bilda@uf.liu.se