En- och flervariabelanalys, 6 hp (TATA91)

Calculus in One and Several Variables, 6 credits

Huvudområde

Matematik Tillämpad matematik

Nivå

Grundnivå

Kurstyp

Programkurs

Examinator

Göran Forsling

Studierektor eller motsvarande

Jesper Thorén
Kursen ges för Termin Period Block Språk Ort VOF
6CMJU Civilingenjör i mjukvaruteknik 4 (VT 2018) 2 4 Svenska Linköping o
VOF = Valbar / Obligatorisk / Frivillig

Huvudområde

Matematik, Tillämpad matematik

Utbildningsnivå

Grundnivå

Fördjupningsnivå

G1X

Kursen ges för

  • Civilingenjör i mjukvaruteknik

Särskild information

Får ej ingå i examen tillsammans med TATA90.

Förkunskapskrav

OBS! Tillträdeskrav för icke programstudenter omfattar vanligen också tillträdeskrav för programmet och ev. tröskelkrav för progression inom programmet, eller motsvarande.

Rekommenderade förkunskaper

Envariabelanalys 1, Linjär algebra

Lärandemål

Att du skall tillägna dig den förtrogenhet med matematiska begrepp, resonemang och samband som ryms inom en- och flervariabelanalys, samt den färdighet i kalkyl och problemlösning som behövs för de fortsatta studierna. Efter fullgjord kurs ska du kunna

  • citera, förklara och använda centrala definitioner och satser
  • lösa problem samt utföra kontroller av resultat och delresultat för att verifiera att dessa är korrekta eller rimliga.

Kursinnehåll

Taylors och Maclaurins formler. Maclaurinutveckling av elementära funktioner, med restterm på ordoform. Tillämpningar bl a på gränsvärdesberäkningar. Ordinära differentialekvationer: första ordningens linjära och separabla ekvationer samt linjära ekvationer av högre ordning med konstanta koefficienter. Generaliserade integraler: konvergensundersökning, absolutkonvergens. Numeriska serier: konvergensundersökning, absolutkonvergens, Leibniz kriterium. Rummet R^n: topologiska grundbegrepp, funktioner från R^n till R^p, funktionsytor, nivåytor och nivåkurvor. Differentialkalkyl: partiella derivator, kedjeregeln, partiella differentialekvationer, gradient, normal, tangent, tangentplan och riktningsderivata. Dubbelintegraler: upprepad integration, funktionaldeterminanter och variabelbyte

 

Undervisnings- och arbetsformer

Kursen ges i form av föreläsningar och lektioner.

Examination

TEN1Skriftlig tentamenU, 3, 4, 56 hp

Betygsskala

Fyrgradig skala, LiU, U, 3, 4, 5

Övrig information

Om undervisningsspråk

Undervisningsspråk visas på respektive kurstillfälle på fliken "Översikt".

  • Observera att även om undervisningsspråk är svenska kan delar av kursen ges på engelska.
  • Om undervisningsspråk är Svenska/Engelska kan kursen i sin helhet ges på engelska vid behov.
  • Om undervisningsspråk är Engelska ges kursen i sin helhet på engelska. 

Övrigt

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som ingår i kursen skall därför genomföras med kursplanen som utgångspunkt. 

Institution

Matematiska institutionen

Studierektor eller motsvarande

Jesper Thorén

Examinator

Göran Forsling

Undervisningstid

Preliminär schemalagd tid: 36 h
Rekommenderad självstudietid: 124 h

Kurslitteratur

Böcker
Forsling, G. och Neymark, N., (2011) Matematisk analys, en variabel LiberM. Neymark, (2016) Matematisk analys, flera variabler.

Böcker

Forsling, G. och Neymark, N., (2011) Matematisk analys, en variabel Liber
M. Neymark, (2016) Matematisk analys, flera variabler.
TEN1 Skriftlig tentamen U, 3, 4, 5 6 hp

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida. Det finns inga filer att visa.

Sidansvarig: Studieinformation, bilda@uf.liu.se