Johan Edstedt
PhD student
Publications
Georg Bokman, Johan Edstedt, Michael Felsberg, Fredrik Kahl, Affine Steerers for Structured Keypoint Description, COMPUTER VISION - ECCV 2024, PT LXXXVI, Lecture Notes in Computer Science, pp. 449-468, SPRINGER INTERNATIONAL PUBLISHING AG (2025) https://doi.org/10.1007/978-3-031-73016-0_26
Johan Edstedt, Georg Bökman, Mårten Wadenbäck, Michael Felsberg, DeDoDe: Detect, Don’t Describe — Describe, Don’t Detect for Local Feature Matching, 2024 International Conference on 3D Vision (3DV), 2024 International Conference on 3D Vision (3DV), Institute of Electrical and Electronics Engineers (IEEE) (2024) https://doi.org/10.1109/3dv62453.2024.00035 https://arxiv.org/abs/2308.08479
Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, Michael Felsberg, RoMa: Robust Dense Feature Matching, 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19790-19800, Institute of Electrical and Electronics Engineers (IEEE) (2024) https://doi.org/10.1109/CVPR52733.2024.01871 https://arxiv.org/abs/2305.15404
Georg Bokman, Johan Edstedt, Michael Felsberg, Fredrik Kahl, Steerers: A framework for rotation equivariant keypoint descriptors, 2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, IEEE Conference on Computer Vision and Pattern Recognition, pp. 4885-4895, IEEE COMPUTER SOC (2024) https://doi.org/10.1109/CVPR52733.2024.00467
Jie Zhao, Johan Edstedt, Michael Felsberg, Dong Wang, Huchuan Lu, Leveraging the Power of Data Augmentation for Transformer-based Tracking, 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6455-6464, Institute of Electrical and Electronics Engineers (IEEE) (2024) https://doi.org/10.1109/wacv57701.2024.00634