johed13

Johan Edstedt

PhD student

Publications

Georg Bokman, Johan Edstedt, Michael Felsberg, Fredrik Kahl,  Affine Steerers for Structured Keypoint Description, COMPUTER VISION - ECCV 2024, PT LXXXVI, Lecture Notes in Computer Science, pp. 449-468, SPRINGER INTERNATIONAL PUBLISHING AG (2025)  https://doi.org/10.1007/978-3-031-73016-0_26

Johan Edstedt, Georg Bökman, Mårten Wadenbäck, Michael Felsberg,  DeDoDe: Detect, Don’t Describe — Describe, Don’t Detect for Local Feature Matching, 2024 International Conference on 3D Vision (3DV), 2024 International Conference on 3D Vision (3DV), Institute of Electrical and Electronics Engineers (IEEE) (2024)  https://doi.org/10.1109/3dv62453.2024.00035  https://arxiv.org/abs/2308.08479

Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, Michael Felsberg,  RoMa: Robust Dense Feature Matching, 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19790-19800, Institute of Electrical and Electronics Engineers (IEEE) (2024)  https://doi.org/10.1109/CVPR52733.2024.01871  https://arxiv.org/abs/2305.15404

Georg Bokman, Johan Edstedt, Michael Felsberg, Fredrik Kahl,  Steerers: A framework for rotation equivariant keypoint descriptors, 2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, IEEE Conference on Computer Vision and Pattern Recognition, pp. 4885-4895, IEEE COMPUTER SOC (2024)  https://doi.org/10.1109/CVPR52733.2024.00467

Jie Zhao, Johan Edstedt, Michael Felsberg, Dong Wang, Huchuan Lu,  Leveraging the Power of Data Augmentation for Transformer-based Tracking, 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6455-6464, Institute of Electrical and Electronics Engineers (IEEE) (2024)  https://doi.org/10.1109/wacv57701.2024.00634