Studying Myc proteins

  

Myc proteins are multifunctional, as they play a role in cell cycle progression, apoptosis and cellular transformation process. Myc proteins act as a universal upregulator of gene expression, except early genes in cells. Deregulated Myc proteins lead to unregulated expression of many genes that results for transforming normal cell to cancer cell. Thus, Myc proteins are strongly considered as a promising target for anti-cancer drugs.  These proteins belong to Myc family of transcription factors and contain a basic helix-loop-helix structural and leucine zipper motifs. These motifs play important role in Myc interactions with DNA and other transcription factors. Myc proteins act both as a transcription factor and transcriptional repressor and play direct role in the control of DNA replication process. Myc activates upon various mitogenic signals such as serum stimulation or by Wnt, Shh and EGF pathways. Malfunction in Myc proteins have been found in carcinoma of the cervix, colon, breast, lung and stomach.

Research Focus

My research project is focused on structure-function studies of the Myc oncoproteins. I am interested on studying their interactions and how they are regulating various cellular processes.

Crystal Structure of Myc and Max in complex with DNA

Crystal Structure of Myc and Max in complex with DNA (Protein data bank Ids are list as 1A93, 1EE4, 1MVO, 1NKP, 2A93, 2OR9 and 4Y7R)

PublicationsShow/Hide content

2019

Selected list of publicationsShow/Hide content

Peer Reviewed research articles

  1. Moparthi, V.K., Li X., Vavitsas K.,Dzhygyr I., Sandh G., Stensjö K. (2016). The two Dps proteins, Npun_F3730 and Npun_F6212, are involved in light-induced oxidative stress tolerance in the N2 fixing cyanobacterium, Nostoc punctiforme. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1857(11):1766 - 1776.
  2. Sandeep B. Gaudana, Jan Zarzycki, Vamsi K. Moparthi, Cheryl A. Kerfeld. (2015). Bioinformatic analysis of the distribution of inorganic carbon Transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria. Photosynthesis Research, Volume 126, Issue 1, Pages 99 - 109.
  3. Moparthi V.K., Brijesh Kumar, Yusra Al-Eryani, Eva Sperling, Górecki,K., Torbjörn Drakenberg, T., Hägerhäll, C. (2014). Functional role of the MrpA- and MrpD-homologous protein subunits in enzyme complexes evolutionary related to respiratory chain complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, Volume 1837, Issue 1, pages 178 - 185.
  4. Virzintiene, E., Moparthi, V.K., Al-Eryani, Y., Shumbe, L., Górecki, K., Hägerhäll, C. (2013). Structure and function of the C-terminal domain of MrpA in the Bacillus subtilis Mrp-antiporter complex – the evolutionary progenitor of the long horizontal helix in complex I, FEBS Letters, Volume 587, Issue 20, Pages 3341-3347.
  5. Moparthi, V.K., Kumar, B., Mathiesen C, Hägerhäll, C. (2011). Homologous protein subunits from Escherichia coli NADH: quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis. Biochimica et Biophysica Acta (BBA) - Bioenergetics, Volume 1807: Issue 4, Pages 427 – 436.
  6. Moparthi, V.K., Hägerhäll, C. (2011). The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 Protein subunits. J Mol Evol, volume 72, Issue 5, Pages 484 - 497.
  7. Gustavsson, T., Trane, M., Moparthi V.K., Miklovyte, E., Moparthi, L., Górecki, K., Leiding, T., Peterson Årsköld, S, Hägerhäll, C. (2010). A cytochrome c- fusion protein domain for convenient detection, quantification and enhanced production of membrane proteins in Escherichia coli - expression and characterization of cytochrome-tagged complex I subunits. Protein Science, Volume 19, Issue 8, pages 1445 - 1460.
  8. Alexandersson, E., Danielson, JAH., Rade, J., Moparthi, V.K., Fontes, M., Kjellbom, P., Johanson, U. (2010). Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress, the Plant Journal, Volume 61, Issue 4, Pages 650 - 660.

Book chapters

Moparthi, V.K., Hägerhäll, C. (2012).  The book title is “A structural perspective on respiratory complex I” and chapter title is - Recruitment of the antiporter module - a key event in complex I evolution (Ed. Sazanov, L.)Springer, Part II, chapter 7, pages 123 - 146.

Peer- reviewed published conference abstracts

  1. Moparthi, V.K., Howe C., Stensjö K. (2015). Functional and Structural characterization of Dps 4, Npun_F3730 in Nostoc punctiforme. 1st international solar fuel conference, P125.
  2. Moparthi, V.K., Howe C., Stensjö K. (2014). Functional and Structural characterization of ferritin-like proteins in cyanobacteria. 12th Nordic Photosynthesis Congress, P39.
  3. Sperling, E., Moparthi, V.K., Kumar, B., Al-Eryani, Y., Virzintiene, E., Hagerhall, C. (2012). The ion-translocation activities of proteins from the Mrp-antiporter family, evolutionarily related to complex I, analyzed in a Bacillus subtilis model system, BBA - Bioenergetics, Volume 1817;S61. Elsevier Science.
  4. Virzintiene, E., Shumbe, L.T., Moparthi, V.K., Al-Eryani, Y., Gorecki, K., Hagerhall, C. (2012). Structure and function of the C-terminal end of MrpA - The evolutionary progenitor of the long, membrane parallel helix domain in Complex I, BBA - Bioenergetics, Volume 1817:S62. Elsevier Science.
  5. Moparthi, V.K., Hägerhäll, C. (2010). The evolution of respiratory chain complex I from an 11-subunit last common ancestor. BBA - Bioenergetics, Volume 1797;20. Elsevier Science.
  6. Kumar, B., Moparthi, V.K., Mathiesen, C, Hägerhäll, C. (2010). Antiporter activity of the individual complex I subunits NuoL, NuoM and NuoN from Escherichia coli analyzed in an in vivo model system. BBA – Bioenergetics, Volume 1797;115. Elsevier Science.
  7. Gorecki K., Drakenberg, T., Moparthi, V. K., Miklovyte E., Trane, M, Hägerhäll, C. (2010). Sodium interaction of the complex I antiporter-like subunits NuoL, M and N from Escherichia coli studied by Na-23 NMR. BBA – Bioenergetics, Volume 1797;15-16. Elsevier Science.
  8. Moparthi, VK., Hägerhäll, C (2008). Characterization of the antiporter-like subunits Nuo L, M and N from respiratory chain complex I. BBA – Bioenergetics, Volume 1777; S36. Elsevier Science.
  9. Moparthi, VK., Hägerhäll, C, (2006). The smallest functional unit of complex I is composed of 11 protein subunits. BBA – Bioenergetics, Suppl P213-214. Elsevier Science.