Complex Networks Dynamics and Control

Complex networked systems appear in a broad range of Engineering, Social and Biological applications. Our research aims at developing suitable dynamical models and distributed control methods.

 

Control of Multiagent NetworksShow/Hide content

How can we control large-scale, complex networks?

Task: Given a multiagent system, representing a complex engineering or technological network, how can we control it in an efficient way? For instance, where should control inputs be placed in order to minimize the cost for control? What kind of algorithms can be used to impose a global emerging behavior in a distributed way, i.e., allowing only local exchange of information among the agents?

 

How: We investigate qualitative and quantitative controllability analysis and control design based on network topology and on the optimization of Gramian-based centrality metrics. Distributed control schemes not relying on any centralized authority can be efficiently developed for most multiagent networks.

Illustration

 

Social NetworksShow/Hide content

Biological networksShow/Hide content

Can we reconstruct an intracellular network?

Task: In each cell, more than 20,000 proteins and genes work together to determine its behavior. In complex diseases like multiple sclerosis, the nominal regulatory interactions are disrupted, hence understanding the networks and their disease-induced alterations is a critical issue. To unravel these interactions we can use data from several types of experiments.

 

 

How: We aim to use tools from regularized linear regression and dimensionality reduction on multi-omics data to identify the main intracellular networks involved in the differentiation of Th-cells, a subset of the immune system playing a predominant role in multiple sclerosis.

Figure below: The Th-cells family, the balance between the expression of these cell subtypes is believed to be a key factor in multiple sclerosis.

The Th-cells family, the balance between the expression of these cell subtypes is believed to be a key factor in multiple sclerosis.

ContactShow/Hide content

About the DivisionShow/Hide content

About the DepartmentShow/Hide content