Photo of Antonios Pantazis

Antonios Pantazis

Associate Professor, Docent

Capturing the molecular transitions governing cellular electrical excitability.

Ion channel biophysics

Understanding the basis of cellular excitability in health and disease.

Our bodies are “wet computers”, utilizing electrical signals to mediate nerve function, a regular heart rhythm, muscle contraction and other physiological functions. Voltage-gated ion channels are fascinating macromolecules that span the cell membrane and, upon receipt of an electrical signal, allow specific ions to cross into or out of the cell. By controlling ionic conduction, ion channels govern cellular excitability; that is, the ability of a cell to generate, and respond to, electrical signals. 

My group combines innovative electrophysiological, optical and computational approaches to investigate how the intricate molecular architecture of ion channels relates to their function and regulation; and how ion channel function or dysfunction governs cellular excitability in health and disease.

News

CV

Positions and Education

  • 2023
    Swedish Fernström Prize
  • 2021
    Associate Professor, Linköping University
  • 2018 - 2021
    Assistant Professor, Linköping University
  • 2012 - 2018
    Assistant Researcher, University of California at Los Angeles, Dept. of Anesthesiology
  • 2008 - 2012
    Postdoc, University of California at Los Angeles, Dept. of Anesthesiology
  • 2006 - 2008
    Postdoc, University College London, Dept. of Pharmacology
  • 2002-2006
    PhD, Cambridge University (Churchill College)
  • 1999-2002
    BA in Natural Sciences, Cambridge University (Churchill College)

Publications

2023

Teresa Mínguez‐Viñas, Varsha Prakash, Kaiqian Wang, Sarah Lindström, Serena Pozzi, Stuart A. Scott, Elizabeth Spiteri, David A. Stevenson, Euan A. Ashley, Cecilia Gunnarsson, Antonios Pantazis (2023) Two epilepsy‐associated variants in KCNA2 (KV1.2) at position H310 oppositely affect channel functional expression Journal of Physiology, Vol. 601, p. 5367-5389 Continue to DOI

2022

Michelle Nilsson, Sarah H Lindström, Maki Kaneko, Kaiqian Wang, Teresa Minguez-Viñas, Marina Angelini, Federica Steccanella, Deborah Holder, Michela Ottolia, Riccardo Olcese, Antonios Pantazis (2022) An epilepsy-associated KV1.2 charge-transfer-center mutation impairs KV1.2 and KV1.4 trafficking Proceedings of the National Academy of Sciences of the United States of America, Vol. 119 Continue to DOI

2021

Marina Angelini, Arash Pezhouman, Nicoletta Savalli, Marvin G. Chang, Federica Steccanella, Kyle Scranton, Guillaume Calmettes, Michela Ottolia, Antonios Pantazis, Hrayr S. Karagueuzian, James N. Weiss, Riccardo Olcese (2021) Suppression of ventricular arrhythmias by targeting late L-type Ca2+ current The Journal of General Physiology, Vol. 153, Article e202012584 Continue to DOI

2020

Antonios Pantazis, Maki Kaneko, Marina Angelini, Federica Steccanella, Annie M. Westerlund, Sarah Lindström, Michelle Nilsson, Lucie Delemotte, Sulagna C. Saitta, Riccardo Olcese (2020) Tracking the motion of the K(V)1.2 voltage sensor reveals the molecular perturbations caused by ade novomutation in a case of epilepsy Journal of Physiology, Vol. 598, p. 5245-5269 Continue to DOI

2019

Antonios Pantazis, Riccardo Olcese (2019) Cut-Open Oocyte Voltage-Clamp Technique Encyclopedia of Biophysics Continue to DOI
Sharmila Venugopal, Soju Seki, David H. Terman, Antonios Pantazis, Riccardo Olcese, Martina Wiedau-Pazos, Scott H. Chandler (2019) Resurgent Na+ Current Offers Noise Modulation in Bursting Neurons. PloS Computational Biology, Vol. 15, Article e1007154 Continue to DOI
Soju Seki, Toru Yamamoto, Kiara Quinn, Igor Spigelman, Antonios Pantazis, Riccardo Olcese, Martina Wiedau-Pazos, Scott H. Chandler, Sharmila Venugopal (2019) Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1(G93A) Mouse Model for ALS Journal of Neuroscience, Vol. 39, p. 8798-8815 Continue to DOI

2018

Antonios Pantazis, Karin Westerberg, Thorsten Althoff, Jeff Abramson, Riccardo Olcese (2018) Harnessing photoinduced electron transfer to optically determine protein sub-nanoscale atomic distances Nature Communications, Vol. 9, Article 4738 Continue to DOI

Organisation