In my PhD-project the goal is to try to increase our understating of NAFLD development and progression. We conduct several clinical studies which focuses on collecting NAFLD related data with a myriad of MRI methods. The goal is to use this data to develop and evaluate MRI methods that aim to detect measurements related to NAFLD and NASH. With the use of this data and data from other types of experiments e.g. animal-models and micro physiological systems (also describing NAFLD), we hope to be able to construct system biology models describing the underlying mechanism for NAFLD development and progression into NASH.
Christian Simonsson
My research aims to develop further understanding on one of the most common liver diseases, non-alcoholic fatty liver disease (NAFLD), through a combination of systems biology modelling and multi modal MRI.
My research
Understanding the development and progression of NAFLD.
Obesity is increasing worldwide and is one of the biggest health risks in today’s society. Because of this, one of the most common liver diseases is non-alcoholic fatty liver disease (NAFLD). Fatty liver is characterized by the excess storage of fat in the liver. Fatty liver is not inherently dangerous, but it can in some cases develop into chronic inflammation in the liver, which is called non-alcoholic steato-hepatitis (NASH). NASH can cause damage to the liver, inducing the formation of scar tissue also called fibrosis. When this state is prolonged the disease can progress into cirrhosis which is when the scar tissue becomes too severe and the liver’s functions starts to fail. Cirrhosis is non-reversible, and the only treatment is a liver-transplantation. Because NAFLD is becoming more prevalent it is of importance to increase the understanding of what metabolic changes occur during the disease’s development and progression. It is also of importance to have precise and non-invasive clinical methods to be able to detect how far a patient is in the disease progression. It might also be of high importance to be able to detect high degrees of inflammation early, so that steps can be taken to limit the development into the more severe conditions.
In my PhD-project the goal is to try to increase our understating of NAFLD development and progression. We conduct several clinical studies which focuses on collecting NAFLD related data with a myriad of MRI methods. The goal is to use this data to develop and evaluate MRI methods that aim to detect measurements related to NAFLD and NASH. With the use of this data and data from other types of experiments e.g. animal-models and micro physiological systems (also describing NAFLD), we hope to be able to construct system biology models describing the underlying mechanism for NAFLD development and progression into NASH.
In my PhD-project the goal is to try to increase our understating of NAFLD development and progression. We conduct several clinical studies which focuses on collecting NAFLD related data with a myriad of MRI methods. The goal is to use this data to develop and evaluate MRI methods that aim to detect measurements related to NAFLD and NASH. With the use of this data and data from other types of experiments e.g. animal-models and micro physiological systems (also describing NAFLD), we hope to be able to construct system biology models describing the underlying mechanism for NAFLD development and progression into NASH.