Thursday 16 February Joakim Arnlind, Departement of Mathematics, Linköping University, part 2
Title: Noncommutative Levi-Civita connections
Abstract: Over the last 40 years, it has become apparent that it is fruitful to extend geometric notions to the setting of noncommutative algebras; both from a mathematical point of view, when studying geometric spaces with few (or no) interesting functions, and from a physical point of view, where noncommutative geometry lies at the heart of constructing theories of quantum gravity.
While the topological aspects of noncommutative geometry are by now fairly well studied, the Riemannian aspects are far less understood, although a lot of progress has been made during the last decade. In particular, the role of the Levi-Civita connection, which is an important object in Riemannian geometry, as well as a fundamental one in general relativity, is not completely understood.
In this series of lectures, I will present an algebraic view on Riemannian geometry, illustrating how one can make sense of e.g. differential forms, vector bundles, metrics and connections in a noncommutative setting. Moreover, I will present material related to the work I've done on the existence and uniqueness of Levi-Civita connections for noncommutative vector bundles.
Thursday 26 January Joakim Arnlind, Departement of Mathematics, Linköping University, part 1
Title: Noncommutative Levi-Civita connections
Abstract: Over the last 40 years, it has become apparent that it is fruitful to extend geometric notions to the setting of noncommutative algebras; both from a mathematical point of view, when studying geometric spaces with few (or no) interesting functions, and from a physical point of view, where noncommutative geometry lies at the heart of constructing theories of quantum gravity.
While the topological aspects of noncommutative geometry are by now fairly well studied, the Riemannian aspects are far less understood, although a lot of progress has been made during the last decade. In particular, the role of the Levi-Civita connection, which is an important object in Riemannian geometry, as well as a fundamental one in general relativity, is not completely understood.
In this series of lectures, I will present an algebraic view on Riemannian geometry, illustrating how one can make sense of e.g. differential forms, vector bundles, metrics and connections in a noncommutative setting. Moreover, I will present material related to the work I've done on the existence and uniqueness of Levi-Civita connections for noncommutative vector bundles.