Carotid plaque assessment (CARMA)

Three researchers are standing around a patient in an MRI.
John Sandlund

Worldwide, the most common cause of death is cardiovascular disease and the dominant cause of cardiovascular disease is atherosclerosis. A significant atherosclerotic plaque in the carotid increases the risk of future heart attack, stroke and cardiovascular death. This project develops methods for better risk assessment of carotid plaque by focusing on plaque composition and blood flow parameters rather than level of vessel constriction.

Atherosclerotic plaques

Atherosclerosis is caused by accumulation of fat, primarily cholesterol in the wall of the arteries. When the fat builds up in the arterial wall it causes thickening of the vessel wall and the thickened area bulges out into the vessel. These thickened areas are called atherosclerotic plaques.

Strokes resulting from blood clots that migrate to the brain from plaque in the carotids cause 2.5% of all deaths. Today, plaques that cause more than 70 % constriction of the carotid in stroke patients are removed surgically to avoid future strokes. The hypothesis is that the blood clots are formed when the plaque surface rupture. The composition of the plaque is affecting the rupture risk. Plaque with a large amount of fat and blood are more prone to rupture. However, studies show that only half of the removed plaques have ruptured. Also, removing the plaque is far from a complete safe guard against future stroke. We believe that the blood flow around the plaque also is an important factor for rupture risk. Additionally, if there is stagnant flow, blood clots could form despite an intact plaque surface. Unfortunately, current clinical tools are insensitive to these effects. Consequently, there is a clear and urgent need to improve carotid plaque assessment in order to more accurately assess risk of progression and rupture in patients as well as to improve risk management in patients with carotid plaques.

Improved carotid plaque risk assessment

In this project we aim to improve carotid plaque risk assessment both for better assessment of overall cardiovascular risk and for better decision support in which patients will benefit from surgery.

The project develops tools for automated visualization and quantification of carotid plaque composition and hemodynamic effects on the vessel wall. This will be achieved by combining advanced quantitative magnetic resonance imaging methods with novel image analysis. In this way, we will automatically identify plaque severity based on the extent of fat and blood within the plaque. Similarly, we will provide assessment of the impact of turbulent flow on the vessel wall. The methods will be evaluated in patients with carotid atherosclerotic plaques to optimize and establish the reliability of the technical developments in a clinical setting.

Successful implementation of the project will enable new approaches for risk stratifying carotid plaques clinically and improved cardiovascular risk management. This will not only improve the selection of patients for preventive care and surgery, but also, through improved management, reduce healthcare costs. 

Photo credit John Sandlund


Key Publications

Cover of publication ''
Sandeep Koppal, Marcel Warntjes, Jeremy Swann, Petter Dyverfeldt, Johan Kihlberg, Rodrigo Moreno, Derek Magee, Nicholas Roberts, Helene Zachrisson, Claes Forssell, Toste Länne, Darren Treanor, Ebo de Muinck (2017)

Magnetic Resonance in Medicine , Vol.78 , s.285-296 Continue to DOI

Cover of publication ''
Magnus Ziegler, Jonas Lantz, Tino Ebbers, Petter Dyverfeldt (2017)

Magnetic Resonance in Medicine , Vol.77 , s.2310-2319 Continue to DOI

Cover of publication ''
Elin Good, Toste Länne, Elisabeth Wilhelm, Joep Perk, Tiny Jaarsma, Ebo de Muinck (2016)

European Journal of Preventive Cardiology , Vol.23 , s.1453-1460 Continue to DOI


Find more CMIV research